

Welcome to Simple Bandwidth Scanner’s documentation!

User main documentation

Included in the
repository root [https://gitweb.torproject.org/sbws.git//tree/]
and in sbws Debian package:

	Readme

	Installing Simple Bandwidth Scanner

	Deploying Simple Bandwidth Scanner

	Changelog

	Authors

	Simple Bandwidth Scanner - SBWS(1)

	Simple Bandwidth Scanner - SBWS.INI(5)

Developer/technical documentation

Included in the
docs directory [https://gitweb.torproject.org/sbws.git/tree/docs] and in
sbws-doc Debian package:

	Contributing to Simple Bandwidth Scanner

	Installing tests dependencies and running tests

	Installing and building the documentation

	How sbws works

	How aggregation and scaling works

	Torflow aggregation and scaling

	Differences between Torflow and sbws

	Code design

	The state.dat file

	Internal code configuration files

	Internal Tor configuration for the scanner

	Package API

	Implementation decissions

	Relays’ bandwidth distribution

	How bandwidth files are shown in the Tor network

	Bandwidth authorities in metrics

	Monitoring bandwidth changes in the Tor Network

	Roadmap

	Glossary

	Frequently Asked Questions (FAQ)

Proposals:

	Switching from helpers to HTTP(S)

Indices and tables

	Index

	Module Index

	Search Page

Readme

Build
Status [https://travis-ci.org/https://travis-ci.org/torproject/sbws]

Simple Bandwidth Scanner (called sbws) is a Tor bandwidth scanner
that generates bandwidth files to be used by Directory Authorities.

The scanner measures the bandwidth of each relay in the Tor network
(except the directory authorities) by creating a two hops circuit with
the relay. It then measures the bandwidth by downloading data from a
destination Web Server and stores the measurements.

The generator read the measurements, aggregates, filters and scales them
using torflow’s scaling method. Then it generates a bandwidth list file
that is read by a directory authority to report relays’ bandwidth in its
vote.

WARNING: This software is intended to be run by researchers using a
test Tor network, such as chutney or shadow, or by the Tor bandwidth
authorities on the public Tor network. Please do not run this software
on the public Tor network unless you are one of the Tor bandwidth
authorities, to avoid creating unnecessary traffic.

ADVICE: It is recommended to read this documentation at
https://tpo.pages.torproject.net/network-health/sbws.
At https://gitlab.torproject.org/tpo/network-health/sbws
some links won’t be properly rendered. It can also be read after
installing the Debian package sbws-doc in /usr/share/doc/sbws or
after building it locally as explained in
./docs/source/documenting.rst.

Installing

See ./INSTALL.rst (in local directory or tpo Gitlab)
or INSTALL.html (local build or Read the Docs).

Deploying and running

See ./DEPLOY.rst (in local directory or tpo Gitlab) or
DEPLOY.html (local build or Read the Docs).

Changelog

See ./CHANGELOG.rst (in local directory or tpo
Gitlab) or CHANGELOG.html (local build or Read the
Docs).

Documentation

More extensive documentation can be found in the ./docs directory,
and online at https://tpo.pages.torproject.net/network-health/sbws.

License

This work is in the public domain within the United States.

We waive copyright and related rights in the work worldwide through the
CC0-1.0 license [https://creativecommons.org/publicdomain/zero/1.0].

You can find a copy of the CC0 Public Domain Dedication along with this
software in ./LICENSE.md

Authors

See ./AUTHORS.md (in local directory or tpo Gitlab) or
AUTHORS.html (local build or Read the Docs).

Installing Simple Bandwidth Scanner

The recommended method is to install it from your system package manager.

In Debian [https://packages.debian.org/search?keywords=sbws&searchon=names&suite=all§ion=all]/Ubuntu [https://packages.ubuntu.com/search?keywords=sbws&searchon=names&suite=all§ion=all] systems:

sudo apt install sbws

To install also the documentation:

sudo apt install sbws-doc

You might need to check in which releases is the package available.

There is a port [https://www.freshports.org/net/py-sbws/] for FreeBSD.

Continue reading to install sbws in other ways.

System requirements

	Tor (last stable version is recommended)

	Python 3 (>= 3.6)

Python dependencies

	Stem [https://stem.torproject.org/] >= 1.7.0

	Requests [http://docs.python-requests.org/] (with socks [http://docs.python-requests.org/en/master/user/advanced/#socks] support) >= 2.10.0

It is recommend to install the dependencies from your system package manager.
If that is not possible, because the Python dependencies are not available in
your system, you can install them from their sources.
We only recommend using pip [https://pypi.org/project/pip/] for development or testing.

Installing sbws from source

Clone sbws:

git clone https://git.torproject.org/sbws.git
git checkout maint-1.1

The branch maint-1.1 is the last stable version and the one that should be
used in production.

and install it:

cd sbws
python3 setup.py install

Installing sbws for development or testing

If you use pip [https://pypi.org/project/pip/], it is recommended to use virtualenv [https://virtualenv.pypa.io/en/stable/installation/], to avoid having
different versions of the same libraries in your system.

To create a virtualenv:

virtualenv venv -p /usr/bin/python3
source venv/bin/activate

Clone sbws:

git clone https://git.torproject.org/sbws.git

Install the python dependencies:

cd sbws && pip install -e .

Configuration and deployment

sbws needs destination s to request files from.

Please, see DEPLOY.rst (in the local directory or Tor Project Gitlab) or
DEPLOY.html (local build or Read the Docs)
to configure, deploy and run sbws.

System physical requirements

	Bandwidth: at least 12.5MB/s (100 Mbit/s).

	Free RAM: at least 2GB

	Free disk: at least 3GB

sbws and its dependencies need around 20MB of disk space.
After 57 days sbws data files use a maximum of 3GB.
If sbws is configured to log to files (by default will log to the
system log), it will need a maximum of 500MB.

It is recommended to set up an automatic disk space monitoring on sbws data
and log partitions.

Details about sbws data:

sbws produces around 100MB of data a day.
By default raw results’ files are compressed after 29 days and deleted after
57.
The bandwidth files are compressed after 7 days and deleted after 1.
After 57 days, the disk space used by the data will be up to 3GB.
It will not increase further.
If sbws is configured to log to files, logs will be rotated after they
are 10MB and it will keep 50 rotated log files.

Deploying Simple Bandwidth Scanner

To run sbws is needed:

	A machine to run the scanner.

	One or more destination (s) that serve a large file.

Both the scanner and your the destination (s) should be on fast,
well connected machines.

destination requirements

	A Web server installed and running that supports HTTP GET, HEAD and
Range (RFC 7233 [https://tools.ietf.org/html/rfc7233.html]) requests.
Apache HTTP Server and Nginx support them.

	TLS support to avoid HTTP content caches at the various exit nodes.

	Certificates can be self-signed.

	A large file; at the time of writing, at least 1 GiB in size
It can be created running:

head -c $((1024*1024*1024)) /dev/urandom > 1GiB

	A fixed IP address or a domain name.

	Bandwidth: at least 12.5MB/s (100 Mbit/s).

	Network traffic: around 12-15GB/day.

If possible, use a Content delivery network [https://en.wikipedia.org/wiki/Content_delivery_network] (CDN) in order to make the
destination IP closer to the scanner exit.

scanner setup

Install sbws according to INSTALL.rst (in the local directory or Tor
Project Gitlab) or INSTALL.html (local build or Read the Docs).

To run the scanner it is mandatory to create a configuration file with at
least one destination.
It is recommended to set several destinations so that the scanner can
continue if one fails.

If sbws is installed from the Debian package, then create the configuration
file in /etc/sbws/sbws.ini.
You can see an example with all the possible options here, note that you don’t
need to include all of that and that everything that starts with # and
; is a comment:

Listing 1 Example sbws.example.ini

Minimum configuration that needs to be customized
[scanner]
A human-readable string with chars in a-zA-Z0-9 to identify your scanner
nickname = sbws_default
ISO 3166-1 alpha-2 country code where the Web server destination is located.
Default AA, to detect it was not edited.
country = SN

[destinations]
With several destinations, the scanner can continue even if some of them
fail, which can be caused by a network problem on their side.
If all of them fail, the scanner will stop, which
will happen if there is network problem on the scanner side.

A destination can be disabled changing `on` by `off`
foo = on

[destinations.foo]
the domain and path to the 1GB file.
url = https://example.com/does/not/exist.bin
Whether to verify or not the TLS certificate. Default True
verify = False
ISO 3166-1 alpha-2 country code where the Web server destination is located.
Default AA, to detect it was not edited.
Use ZZ if the location is unknown (for instance, a CDN).
country = ZZ

Number of consecutive times that a destination could not be used to measure
before stopping to try to use it for a while that by default is 3h.
max_num_failures = 3

The following logging options are set by default.
There is no need to change them unless other options are preferred.
; [logging]
; # Whether or not to log to a rotating file the directory paths.log_dname
; to_file = yes
; # Whether or not to log to stdout
; to_stdout = yes
; # Whether or not to log to syslog
; # NOTE that when sbws is launched by systemd, stdout goes to journal and
; # syslog.
; to_syslog = no

; # Level to log at. Debug, info, warning, error, critical.
; # `level` must be set to the lower of all the handler levels.
; level = debug
; to_file_level = debug
; to_stdout_level = info
; to_syslog_level = info
; # Format string to use when logging
; format = %(module)s[%(process)s]: <%(levelname)s> %(message)s
; # verbose formatter useful for debugging
; to_file_format = %(asctime)s %(levelname)s %(threadName)s %(filename)s:%(lineno)s - %(funcName)s - %(message)s
; # Not adding %(asctime)s to to stdout since it'll go to syslog when using
; # systemd, and it'll have already the date.
; to_stdout_format = ${format}
; to_syslog_format = ${format}

To disable certificate validation, uncomment the following
verify = False

If sbws is installed from the sources as a non-root user then create the
configuration file in ~/.sbws.ini.

More details about the configuration file can be found in
./docs/source/man_sbws.ini.rst (in the local directory or Tor Project
Gitlab) or man_sbws.ini.html (local build or Read the Docs) or
man sbws.ini (system package).

See also ./docs/source/man_sbws.rst (in the local directory or Tor Project
Gitlab) or man_sbws.html (local build or Read the Docs) or man sbws
(system package).

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a
Changelog [http://keepachangelog.com/en/1.0.0/] and this project
adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

1.2.0

New

	Docs: Include script on how to release.

	Scripts: Add script to help new releases.

	Add gitchangelog template.

	Add gitchangelog configuration file.

	Docs: Add bwauths list image.

	Relaylist: Keep relays not in last consensus.
Keep the relays that are not in the the last consensus, but are not
“old” yet.

	Util: Add function to know if timestamp is old.
Part of #30727.

Changes

	Stem: Set default torrc options.
when connecting to an external tor and they are not already set.

	Generate, cleanup: Use 28 days of measurements.
When generating the Bandwidth File as Torflow, use 28 days of past raw
measurements instead of 5, by default.
Also keep the raw measurements for that long before compressing or
deleting them.
And stop checking whether the compression and delete
periods are valid, without checking defaults first and based on
arbitrary values.

	Stem: Add function to connect or start tor.
Move initialization via existing socket to this new function and start
tor only when it fails.

	Stem, scanner: Change args initializing controller.
to check whether the external control port configuration is set.
There is no need to assert all argument options nor to return the error.

	Config: Add option to connect to external tor.
via control port.

	Circuitbuilder: Remove not used attributes.
and make argument optional.

	Circuitbuilder: Simplify building circuit.
Since sbws is only building 2 hop paths, there is no need to add random
relays to the path, or convert back and forth between fingerprint and
Relay objects.
This will eliminate the circuit errors:
- Tor seems to no longer think XXX is a relay
- Can not build a circuit, no path.
- Can not build a circuit with the current relays.
If a relay is not longer running when attempting to build the circuit,
it will probably fail with one of the other circuit errors: TIMEOUT,
DESTROYED or CHANNEL_CLOSED.

	Scanner: Stop storing recent_measurement_attempt.
because it stores a timestamp for each attempt, which makes state.dat
grow thousand of lines (json).
Closes #40023, #40020

	V3bwfile: Exclude relays without observed bw.
and without consensus bw from scaling.
Part of #33871, closes #33831.

	V3bwfile: Percentage difference with consensus.

	V3bwfile: Calculate hlimit from scaled sum bw.
instead of bw before scaling.
Tests have finally correct value.
For 1 result, only when the cap is 1, the value will be equal to the
rounded bw because the cap does not limit it.

	V3bwfile: Obtain consensus values from last consensus.

	V3bwfile: Round scaled bandwidth after capping.
Make tests pass because the high limit change the expected values,
but the final value still needs to be fixed.

	V3bwfile: Change logic obtaining min bandwidth.
Take either the consenus bandwidth or the descriptor bandwidth if
one of them is missing, do not scale when both are missing and
ignore descriptor average and burst when they are missing.

	V3bwfile: Scale relays missing descriptor bws.
Scale relays without average or observed bandwidth.
Later it will be check what to do if their values are None or 0

	V3bwfile: Stop making mean minimum 1.

	V3bwfile: Calculate filtered bandwidth.
for each relay, calculate the filtered mean for all relays and
calculate the filtered ratio for each relay.

	Scaling: Add filtered bandwidth function.
to calculate the filtered bandwidth for each relay.

	Bwfile: Test KeyValues in a bandwidth file.
Added:
- library to check whether the KeyValues make sense
- test an example bandwidth file
- a command to check an arbitrary bandwidth file
Finally, doing something with all these KeyValues!
(Quarantine day 7th)

	V3bwfile: Count recent relay’s monitoring numbers.
using timestamps class.
Also add one more result to the tests data and change the
test accordingly.

	Tests: Remove _count from attr.

	Resultdump: Add missing attrs to errors.

	Resultdump: Remove _count from attributes.
Tests wont’ pass with this commit, they’ll be fixed in the next commits

	Relayprioritizer: Count priorities with timestamps.
in RelayPrioritizer:

	Rename recent_priority_list_count to recent_priority_list when
there is no counting

	Rename recent_priority_relay_count to recent_priority_relay
when there is no counting

	Use the timestamps class to manage/count priority lists/relays

	Relaylist: Count measurements with timestamps.
in RelayList:

	Rename recent_measurement_attempt_count to recent_measurement_attempt when
there is no counting

	Use the timestamps class to manage/count measurement attempts

	Relaylist, v3bwfile: Count consensus with timestamps.
in RelayList:

	Rename consensus_timestamps to recent_consensus

	Rename recent_consensus_count to recent_consensus when there is
no counting

	Use the timestamps class to manage/count consensuses

	Remove method not needed anymore

	V3bwfile: Convert datetime to str.

	Resultdump: Use custom json encoder/decoder.

	State: Encode/decode datetimes.

	Json: Create custom JSON encoder/decoder.
to be able to serialize/deserialize datetime in the state file.

	Timestamps: Add module to manage datetime sequences.

	State: Add method to count list values.

Fix

	Clarify release script dependencies.

	Use rst changelog template.
and put in the same entry commit subject and body removing new lines.

	Correct network stream and filtered bw.
because Torflow is not using them by relay type.

	V3bwfile: network means without relay type.
This reverts commit fc3d3b992ada601a6255f8a6889179abd4b7e55e and partially
reverts a82c26184097bea3ca405ae19773de7c4354a541.
It was a mistake to think torflow was using the means by relay type,
it actually sets the same networks means for all relay types.
Closes #40080.

	Semi-automatic correction of typos.
Closes #33599.

	Tests: Add codespell configuration.

	Tests: Additional security tests.

	CI: Use all tox environments for python 3.8.

	2nd round of automatic format.
black insists to keep one long line and flake complain, therefore make
flake to ignore it.

	Flake8 errors.

	Reorder imports with isort.

	Reformat all with black.

	Move to declarative setup.cfg.
Also:
- Update versioneer
- And include other source distribution files in MANIFEST.in
- Add project URLs
- Add formatter and linter dependencies and configurations.
- tox: Remove travis, fix python environments
- tox: Remove extra coverage options and add them in .coveragerc.

	Indent by default to 2 except python files.
also uncomment final newline. Can be commented again in case it fails

	V3bwfile: network means by relay type.
Calculate network stream and filtered bandwidth averages per relay
type, to obtain bandwidth weights the same way as Torflow.
Closes #40059.

	Scaling: Return mean if no bw >= mean.

	Scaling: Stop returning 1 as the means minima.
since they are used as the numerator when calculating the ratio and the
rounding already returns a minimum of 1.

	Scaling: Return if there are no measurements.
it should not be the case because the measurements come from
successful results, but otherwise it’d throw an exception.

	Tests: Add bw filtered from results.

	Scaling: round bandwidth filtered.
because Torflow does it.

	Scanner: Return from measure if no helper.
After refactoring in #40041, it was forgotten to return the error in
the case a helper was not found, what can happen in test networks.
Closes #40065.

	Tests: debug log for tests by default.
and fix test that didn’t consider that there might be other logs from
other threads.
Closes #33797.

	Scanner: Log times kept.
not only the times that are not kept.
Closes #40060

	CI: Temporal workaround for #40072.

	Relalist: Use the consensus timestamp.
to the relay consensus timestamps list, so that it can be
tested it was in a concrete consensus.

	CI: Exit from integration script.
when any of the commands fail.

	CI: Update Python versions.
Closes #40055.

	CI: Update tor versions.

	System physical requirements.
After fixing #40017, the datadir files are compressed after 29 days and
deleted after 57. However the total used disk space is less than 3G,
leaving 3G as precaution.
Closes #40044.

	Scanner: Return from measure if no helper.
After refactoring in #40041, it was forgotten to return the error in
the case a helper was not found, what can happen in test networks.
Closes #40065.

	Update differences Torflow/sbws.
Closes #40056

	Reorganize Torflow aggregation.
- reorganize sections
- add diagrams and links
- add pseudocode
- remove math
- correct statements
So that it’s more accurate and easier to understand.

	Docs: Rename section, add diagrams.

	Separate Torflow/sbws differences.
into a new file.

	Add target to call plantuml.
and generate .svg from .puml files.
Do not add to the html target since the generated svg images are
not deterministic and will change every time plantuml is call.

	Separate how scanner and generator work.
in different files and link to each other.

	Add missing new lines.

	CI: Make wget quiet.
to avoid many lines of non useful text the CI.

	Scanner: Rm condition assigning helper.

	Scanner: Move as_entry/as_exit into one function.
since they’re similar code

	Scanner: remove relay to measure as helper.

	Scanner: log exit policy when stream fails.

	Relaylist: Remove duplicated can exit methods.
After refactoring and making clear when we were using exit(s) that can
exit to all public IPs (and a port) or only some, refactor them
removing the duplicated code and adding the strict argument.

	Add relay measure activity diagram.

	Scanner: extract method on circuit error.
At some point all possible errors should be exceptions.

	Scanner: extract method for not helper case.

	Scanner: extract method to create paths.
because measure_relay method is too long, confusing and we have had
several bugs in this part of the code.

	Relaylist: Add methods to obtain exits that.
can exit to some IPs.
To use them in the cases it will be more convenient.

	Relaylist: rename exits_not_bad_allowing_port.
see previous commit

	Relaylist: rename is_exit_not_bad_allowing_port.
see previous commit

	Relaylist: rename can_exit_to_port.
to can_exit_to_port_all_ips, because it’s using strict, which means
that it allows to exit to all IPs.
It seems more convenient to try first with exits that allow to
exit to some IPs and only try a second time if that fails, because
there are more.

	Resultdump: Check that the error has a circuit.
Because if the error is not a circuit error, it does not have that
attribute.

	Tests: Run integration tests with chutney.
and adapt the tests to pass.
o/

	Add chutney configuration.
and scripts to run the integration tests with chutney.
It does not replace yet the way integration tests are run.

	Stem: Move torrc option that does not depend on config.
It seems we forgot this option when refactoring in #28738.

	Stem: Remove torrc option that is the default.
to avoid conflict when comparing the options that should be set and the
ones are set, since the SocksPort will be differently in chutney.

	Resultdump: Log if relay was measured as exit.
or entry.
Closes #40048

	Relaylist: Stop measuring relays not in the consenus.
as this might cause many circuit errors.
They’re already added to the generator.
Also adapt the number in test_init_relays.

	Sphinx warnings when creating documentation.
This should give us at least a clean html, text, and man build
experience.
Closes #40036.

	Add forgotten image from consensus health.
It was referenced by 6e6a8f3ba534cbd93b830fe3ffd5ce40abe8e77d. Since that
image was wrong, created a new screenshot from the current “past 90
days” at consensus-health.tpo.

	Stem: Add possible exception cause.

	Stem: Remove unused code.

	Stem: Exit on failure connecting to control port.
because when trying to connect to an external tor (chutney), it does
not make sense to start own tor.
Also log how the connection has been made.

	Update values in config_tor.rst + clean-up.
Closes #40035.

	Update default values in man_sbws.ini.rst.
Closes #40034.

	Clean up config.rst.
Closes #40033.

	Scanner: Retry to measure exit as exit.
if it fails to be measured as entry.
Mayb closes: #40029.

	Relaylist: Comment on IPv6 exit policy.
that could be also checked, increasing the chances that the exit can
exit to our Web servers.
But if it could not, then we need to retry to measure it as 1st hop.

	Config: Increment circuit build timeout.
setting it to the default, 60secs.
Since many relays fail to be measured cause of circuit timeout.
Maybe closes #40029.

	Bump bandwidth file version to 1.5.0.
after removing KeyValue recent_measurement_attempt_count in #40023.
Changed also torspec, issue #20.

	V3bwfile: Tor version added in bandwidth v1.4.0.
since, by mistake, the bandwidth file version here was never updated
to v1.5.0.
This patch only changes the constants names, but logic remains the same.
Related to torspec#35.

	Add the bwauths timeline wiki.
Closes #40013.

	Add bwauthealth tool.

	Add consensus health page.
about bwauths measured relays.

	Move consensus weight to top.
and explain what to check.

	V3bwfile: Take all measurements when IP changes.
Previously, when a relay changes IP, only the measurements with the
last IP were considered.
Relays with dynamic IP could get unmeasured that way.
Now, all the measurements are considered.

	V3bwfile: Avoid statistics without data.
If mean or median argument is empty, they throw an exception.
This can happen when the scanner has stopped and the result is
stored as successful without any downloads.

	No need to use Travis anymore.

	Clarify branch to use when contributing.

	Maint: Fix linter error after merging #29294.

	Tests: Stop converting boolean key to int.
Conversion only happens when parsing a bandwidth file in the
integration tests.

	Relaylist: filter out private networks.
when checking exit policies to know whether an exit can exit to a port.

	Update authors.

	Replace docs links from Github to Gitlab.

	Update reviewers.

	Replace Github review process to Gitlab.
Replace also Github terminology to Gitlab.

	Replace Trac, ticket by Gitlab, issue.

	Replace links from Trac to Gitlab.

	Start using release script later.
Change the version from which the release script is used.
Also explain the prefixes used in the commits.
Closes #29294

	Scripts: Clarify the scope of the script.
it should not take more effort than solving self-sbws issues.

	Scripts: Reformat sentence.

	Scripts: Stop bumping to next prerelease version.
since it is now managed automatically by versioneer.
Instead, suggest creating a “next” maintenance branch.
But stop using - and . characters in it, to type it faster, since
most of the new branches will be based on it.

	Scripts: Stop releasing from -dev0 version.
since now sbws version is calculated from last release tag.

	Scripts: Stop changing version in __init__
Since it is now done by versioneer.

	Scripts: Change Github by Gitlab.
releases can live now in gitlab.tpo, instead of github.com and
there is no need to check them since Gitlab is FLOSS and gitlab.tpo is
hosted by Tor Project.
Also, stop assuming which is the current branch and remote and do not
push. Instead guide the maintainer to do it.

	CI: Add .gitlab-ci.yml to run tests in Gitlab.

	Relaylist: Check exit to all domains/ips.
When an exit policy allows to exit only to some subnet, it is not
enough to check that it can exit to a port, since it can, but it might
not be able to exit to the domain/ip of the sbws Web servers.
To ensure that without having to check whether it can exit to a
specific domain/ip, we can query the exit policy with strict.
Closes #40006. Bugfix v1.0.3.

	V3bwfile: Count relay priority lists.
and measurement attempts from all the results.
Until they get properly updated.
Also change dates in tests, so that timestamps are counted correctly

	Recomment maint-1.1 for production.

	Recommend using a CDN,
add link to it and rephrase some sentences.

	Increase RAM required.
ahem, because of all json it has to manage in memory.

	Recommend pip only for development.
or testing and add links.

	Update supported Python versions.

	Comment on Debian/Ubuntu releases.
because sometimes the package might not be in Debian stable or testing
and we are not checking Ubuntu releases.

	Tests: Remove all the t in torrc files.
at the beginning of the line and in empty lines. They are not needed.

	Tests: Create new authority keys.
because they expired.
They will expire again in a year.
Implementing #33150 and using chutney would avoid to update keys.
Closes #34394.

	V3bwfile: linter error with new flake version.

	Add differences between Torflow and sbws.
Closes #33871.

	Update/clarify Torflow aggregation.

	Docs: Remove unneeded linter exception.

	Docs: Move torflow scaling docstring to docs.
so that it has its own page as it is too long as docstring and is
harder to write latex with the docstring syntax.

	Unrelated linter error.

	V3bwfile: Remove unneeded minimum 1.
since rounding already returns 1 as minimum.

	V3bwfile: Use cap argument to clip scaled bw.
Make test pass, though the value is not correct since it needs to be
rounded after clipping

	V3bwfile: cap is never None.

	V3bwfile: Warn about None bandwidth values.
since they are probably due a bug.

	Check that log prints a number.
and not a list of timestamps.

	Assert that caplog messages were found.

	Explain changes in the previous commits.

	Tests: Check the files generated in test net.
Test that the results, state and bandwidth file generated by running
the scanner and the generator in the test network are correct.

	Tests: Add tests loading results.
in ResultDump and incrementing relay’s monitoring KeyValues.

	Tests: Add results incrementing relays’
monitoring KeyValues.

	V3bwfile: Stop calculating failures with 0 attempts.

	Relaylist: Count recent relay’s monitoring numbers.
using timestamps class.
Additionally:
- fix: relayprioritizer: Replace call relay priority
- fix: scanner: Replace call relay measurement attempt

	State: Let json manage data types.
Since state uses json and json will raise an error when it can’t
decode/encode some datatype.

	State: Read file before setting key.
Otherwise, if other instance of state set a key, it’s lost by the
current instance.
Bugfix v0.7.0.

	Tests: Test state file consistency.
Test that two different instances of state don’t overwrite each other.
This test don’t past in this commit, will pass in the next bugfix.
Bugfix v0.7.0, which claimed 100% test coverage on state.

	Tests: linter error cause missing nl.

	Relaylist: Update relay status before consensus.
Update relay status before updating the consensus timestamps
Timestamps that are not old yet were getting removed because the
document.valid_after timestamp was still the one from the previous
consensus.
Closes #33570.

	Tests: Test the number of consensus in Relay.
This test does not pass in this commit, but in the next bugfix.

	Relaylist: Use is_old fn removing consensus.
since the logic is the same and the there were two bugfixes on the
same logic.

	Relaylist: Use seconds removing consensuses.
by default days is passed to timedelta, what was making the oldest
date be thousands of days in the past.
Bugfix 1.1.0.

	Tests: Add relaylist test.
Tests don’t pass in this commit, they’re fixed in the next commits.

	Tests: Add mocked controller fixture.
to be able to unit test all the code that needs a controller.

	Tests: Add test for remove old consensus ts.
Tests don’t pass in this commit, it’s fixed in the next commits.

	Timestamp: measurements period is in seconds.
by default days is passed to timedelta, what was making the oldest
date be thousands of days in the past.

	Timestamp: Old timestamps are minor than older.
Old timestamps are minor than the older date, not major.

	Relaylist: Stop passing argument to self.is_old.

	Tests: Add test timestamp.is_old.
The tests don’t pass in this commit, it’s fixed in the next ones.

	V3bwfile: Reformat to don’t get flake8 errors.
Part of #30196

	V3bwfile: Move keys to correct constant.
Part of #30196.

	V3bwfile: Add comment about bwlines v1.3.
Part of #30196.

	V3bwfile: Add tor_version KeyValue.

	Create new KeyValues constants for the new v1.5.0 KeyValues

	Instantiate State in Header.from_results so that there is no need
to create new methods for all the header KeyValues that are read
from the state file

	Add tor_version to the kwargs to initialize the Header

	Write tor_version in the state file when the scanner is started

	V3bwfile: Add constant for ordered key/values.
to build the list of all keys from it and ensure no key is missing.

	V3bwfile: Reformat to don’t get flake8 errors.
After the automatic constants renaming, fix the flake8 errors by
reformatting automatically with black, only the lines that had
errors.
Part of #30196

	Document why ersioneer to obtain version.

	Add at build time the git revion to version.
Instead of having a hardcoded version, calculate the version at build
time making use of git describe –tags –dirty –always.
This way, even if the program is not running from inside a git
repository it still can know which was the git revision from the
source it was installed from.
If the program is launched from a path that is a git repository, it
does not gives the git revision of that other repository.
If’s also able to get the version when installed from a tarball.
It does not add the git revision when it’s being install from a git
tag.
versioneer external program is only needed the first time, because
it copies itself into the repository. So it does not add an external
dependency.
There’re no changes needed to the –version cli argument nor to the
code that generates the bandwidth file, since they both use the
variable __version__.
The version previous to this commit was 1.1.1-dev0, after
this commit, it becomes 1.1.0+xx.gyyyyyyyy, ie. xx commits after
1.1.0 plus the git short hash (yyyyyyyy).

	Tests: Test maximum retry delta in destination.

	Destination: Replace constant name.
to make it consistent with others and shorter.
Part of #33033.

	Destination: Set maximum to retry a destination.
otherwise the time to retry a destination could increase too much,
as it’s being multiplied by 2, and a destination would not recover.
Patch submitted by tom.

	Relaylist: linter error after after merge.
Fix linter error after merging #30733 and #30727.

	CI: Cache pip, run tox stats after success.
and do not require sudo.

	CI: Test all supported python versions.
As in chutney and stem:
- Test all supported python versions
- Test all supported tor versions
Differences between chutney, stem and sbws:
- in sbws we run directly, not an script that calls tox
- we’re not using chutney for integration tests (yet) and therefore we’re not testing it with different networks
- we don’t have shellcheck tests
- we don’t support osx nor windows

	Relaylist: Update the relays’ descriptors.
when fetching new consensuses.
Part of #30733.

	Globals: Fetch descriptors early.
and useless descriptors, so that sbws detect early changes in the relay
descriptors and continue downloading them even when Tor is idle.

Other

	Wip: rm me, temporally change release url.
to personal fork, to test the release process

	Fixup! minor: Change info logs to debug or warning.

	Major: Change default log level to info.
also change formatting to show thread.

	Minor: Change log warning to info or debug.
when it contains sensitive information.

	Minor: Change info logs to debug or warning.
when they contain sensitive information, eg. Web server or are too
verbose for the debug level.
Also add log to indicate when the main loop is actually started.

	Revert “fix: stem: Remove torrc option that is the default”
This reverts commit 15da07d6a447d8310354124f6020b4cf74b75488.
Because it’s not the default. No additional changes are needed in the
tests.
Closes #40064.

	Minor: scanner: Change logic creating the path.
When the relay is not an exit, instead of choosing exits that can
exit to all IPs, try with exits that can exit to some IPs, since the
relay will be measured again with a different exit in other loop.
When the relay is an exit, instead of ensuring it can exit all IPs, try
using it as exit if it can exit to some IPs.
If it fails connecting to the Web server, then try a 2nd time using it
as entry to avoid that it will fail in all loops if there is only one
Web server, cause it will be used again as an exit.
Also, the helper exits don’t need to be able to exit all IPs. When a
helper exit fails to exit (maybe cause it can not exit to the Web
sever IP), it’s not a problem cause in a next loop other exit will be
chosen.
This change of logic also solves the bug where non exits were being
used as exits, because we were trying to measure again a relay that
was used as entry, because it could not exit all IPs, which includes
also the non exits.

	Minor: scanner: move checking helper to methods.
helper variable is only used to return error, therefore move it to
the methods that create the path and return the error there.
our_nick is not useful for the log, since it is always the same, but
not removing it here.

	Vote on the relays with few or close measurements.
to vote on approximately the same numbers of relays as Torflow.
Torflow does not exclude relays with few or close measurements, though
it is possible that because of the way it measures, there are no few
or close measurements.
Closes #34393

	Doc: fix: Update sbws availabity in OS and links.

	Bug 33009: Require minimum bandwidth for second hop.

	Use freeze_time() in other parts of our tests, too.
When using _relays_with_flags() and similar methods it’s possible
that tests start to hang without time freezing. See bug 33748 for more
details. We work around this by providing the necessary freeze_time()
calls meanwhile.

	Bug 33600: max_pending_results is not directly used in main_loop

	Fixup! fix: CI: Test all supported python versions.

	Relaylist: stop using the current time when a consensus is downloaded twice.
Instead:
* use the consensus valid-after time, or
* use the supplied timestamp, or
* warn and use the current time.
This should fix the occasional CI failure, when the current time is 1 second
later than the test consensus time. (Or it should warn, and we can fix the
test code.)
Fixes bug 30909; bugfix on 1.1.0.

	V3bwfile: skip relay results when required bandwidths are missing.
Fixes bug 30747; bugfix on 1.1.0.

	Bump to version 1.1.1-dev0.

v1.1.0 (2019-03-27)

New

	V3bwfile: Report excluded relays.
Closes: #28565.

	V3bwfile: Add time to report half network.
Closes: #28983

	Destination: Recover destination when it failed.
Closes: #29589.

	V3bwfile: Report relays that fail to be measured.
Closes: #28567.

	V3bwfile: Report relays that are not measured measured.
Closes: #28566

	V3bwfile: Add KeyValues to monitor relays.
Closes: #29591.

	Docs: document that authorities are not measured.
Closes: #29722

	Scanner: Warn when there is no progress.
Closes: #28652

Fix

	v3bwfile: Report relays even when they don’t reach a minimum number.
Closes: #29853.

	Minor fixes. Closes #29891.

	Relaylist: Convert consensus bandwidth to bytes.

v1.0.5 (2019-03-06)

	Release v1.0.5.
this time with the correct version

v1.0.4 (2019-03-06)

	Release v1.0.4.
because there was a commit missing between 1.0.3 and 1.0.4-dev0
and what is released as 1.0.3 has version 1.0.4-dev0 and it
can not be fixed now.

v1.0.3 (2019-02-28)

Fixed

	scanner: check that ResultDump queue is not full
Fixes bug #28866. Bugfix v0.1.0.

	config: set stdout log level to cli argument. Closes: #29199

	cleanup: Use getpath to get configuration paths. Bugfix v0.7.0.

	destination: stop running twice usability tests.
Fixes bug #28897. Bugfix v0.3.0

	globals, stem: explain where torrc options are.
Fixes bug #28646. Bugfix v0.4.0

	stem: disable pad connections. Fixes bug 28692. Bugfix v0.4.0

	generate: Load all results, including error ones.
Closes #29568. Bugfix v0.4.0 (line introduced in v0.1.0).

	relayprioritizer: Stop prioritizing relays that tend to fail.
Fixes bug #28868. Bugfix v0.1.0

	circuitbuilder: Stop building the circuit 3 times.
Fixes bug #29295. Bugfix v0.1.0.

	docs: add verify option to man and example.
Closes bug #28788. Bugfix v0.4.0.

	CI: run scanner using the test network. Fixes bug #28933. Bugfix v0.1.0.

	scanner: catch SIGINT in the main loop. Fixes bug #28869. Bugfix v0.1.0.

	Stop including tests network as binary blob. Fixes bug #28590. Bugfix v0.4.0.

	relaylist: remove assertions that fail measurement.
Closes #28870. Bugfix v0.4.0

	config: Use configuration provided as argument.
Fixes bug #28724. Bugfix v0.7.0.

	stem: parse torrc options that are only a key.
Fixes bug #28715. Bugfix v0.1.1

	stem: Stop merging multiple torrc options with the same name.
Fixes bug #28738. Bugfix v0.1.1

	docs: add note about syslog when running systemd.
Closes bug #28761. Bugfix v0.6.0

	CI: include deb.torproject.org key.
Closes #28922. Bugfix v1.0.3-dev0

	config: stop allowing http servers without tls.
Fixes bug #28789. Bugfix v0.2.0.

	Make info level logs more clear and consistent.
Closes bug #28736. Bugfix v0.3.0.

	CI: check broken links in the docs. Closes #28670.

	docs: add scanner and destination requirements.
Closes bug #28647. Bugfix v0.4.0

	generate: use round_digs variable name in methods.
Closes bug #28602. Bugfix 1.0.3-dev0

	docs: Change old broken links in the documentation. Closes #28662.

	docs: replace http by https in links. Closes #28661.

	Fix git repository link. Fixes bug #28762. Bugfix v1.0.0.

	docs: add example destination in DEPLOY. Closes #28649.

	docs: Change links to be interpreted by ReST. Closes #28648.

	Force rtfd.io to install the package. Closes bug #28601.

	config: continue when the file is not found. Closes: #28550.

	Stop resolving domains locally and check same flags for the 2nd hop.
Closes bug #28458, #28471. Bugfix 1.0.4.

	Limit the relays’ bandwidth to their consensus bandwidth. Closes #28598.

	globals: add torrc logging options. Closes #28645. Bugfix v0.2.0.

	Limit bandwidth to the relay MaxAdvertisedBandwidth
Fixes bug #28588. Bugfix 0.8.0.

	Exclude results, then check for the minimum number. Closes bug 28572.

	Make sbws round to 3 significant figures in torflow rounding mode.
Bugfix on 27337 in sbws 1.0. Part of 28442.

Changed

	tests: remove unused testnets. Fixes bug #29046. Bugfix v0.4.0.

	scanner, destination: Log all possible exceptions.

	docs: Update/improve documentation on how the scanner/generator work.
Closes: #29149

	Requests: Change make_session to use the TimedSession.

	CI: change to Ubuntu Xenial.

	docs: stop editing changelog on every bug/ticket. Closes ticket #28572.

	Change sbws scaling method to torflow. Closes: #28446.

	Round bandwidths to 2 significant digits by default.
Implements part of proposal 276. Implements 28451.

Added

	Send scanner metadata as part of every HTTP request. Closes: #28741

	scanner: log backtrace when not progressing. Closes: 28932

v1.0.2 (2018-11-10)

Fixed

	Update bandwidth file specification version in the generator
(#28366).

	Use 5 “=” characters as terminator in the bandwidth files (#28379)

Changed

	Include the headers about eligible relays in all the bandwidth files,
not only in the ones that does not have enough eligible relays
(#28365).

v1.0.1 (2018-11-01)

Changed

	Change default directories when sbws is run from a system service
(#28268).

v1.0.0 (2018-10-29)

Important changes:

	generate includes extra statistics header lines when the number
of eligible relays to include is less than the 60% of the network. It
does not include the relays’ lines.

	Speed up scanner by disabling RTT measurements and waiting for
measurement threads before prioritizing again the list of relays to
measure.

Fixed

	Update python minimal version in setup (#28043)

	Catch unhandled exception when we fail to resolve a domain name
(#28141)

	Bandwidth filtered is the maximum between the bandwidth measurements
and their mean, not the minimum (#28215)

	Stop measuring the same relay by two threads(#28061)

Changed

	Move examples/ to docs/ (#28040)

	Number of results comparison and number of results away from each
other are incorrect (#28041)

	Stop removing results that are not away from some other X secs
(#28103)

	Use secs-away when provided instead of data_period (#28105)

	Disable measuring RTTs (#28159)

	Rename bandwidth file keyvalues (#28197)

Added

	Write bw file only when the percentage of measured relays is bigger
than 60% (#28062)

	When the percentage of measured relays is less than the 60%, do not
include the relays in the bandwidth file and instead include some
statistics in the header (#28076)

	When the percentage of measured relays is less than the 60% and it
was more before, warn about it (#28155)

	When the difference between the total consensus bandwidth and the
total in the bandwidth lines is larger than 50%, warn (#28216)

	Add documentation about how the bandwidth measurements are selected
and scaled before writing them to the Bandwidth File (#27692)

v0.8.0 (2018-10-08)

Important changes:

	Implement Torflow scaling/aggregation to be able to substitute
Torflow with sbws without affecting the bandwidth files results.

	Change stem dependency to 1.7.0, which removes the need for
dependency_links

	Update and cleanup documentation

Added

	Add system physical requirements section to INSTALL (#26937)

	Warn when there is not enough disk space (#26937)

	Implement Torflow scaling (#27108)

	Create methods to easy graph generation and obtain statistics to
compare with current torflow results.(#27688)

	Implement rounding bw in bandwidth files to 2 insignificant
digits(#27337)

	Filter results in order to include relays in the bandwidth file
that:(#27338)

	have at least two measured bandwidths

	the measured bandwidths are within 24 hours of each other

	have at least two descriptor observed bandwidths

	the descriptor observed bandwidths are within 24 hours of each other

Fixed

	Broken environment variable in default sbws config. To use envvar
$FOO, write $$FOO in the config.

	Stop using directory as argument in integration tests (#27342)

	Fix typo getting configuration option to allow logging to file
(#27960)

	Set int type to new arguments that otherwise would be string (#27918)

	Stop printing arguments default values, since they are printed by
default (#27916)

	Use dash instead of underscore in new cli argument names (#27917)

Changed

	sbws install doc is confusing (#27341)

	Include system and Python dependencies in INSTALL.

	Include dependencies for docs and tests in INSTALL.

	Point to DEPLOY to run sbws.

	Remove obsolete sections in INSTALL

	Simplify DEPLOY, reuse terms in the glossary.

	Remove obsolete sbws init from DEPLOY.

	Point to config documentation.

	Add, unify and reuse terms in glossary.

	refactor v3bwfile (#27386): move scaling method inside class

	use custom install_command to test installation commands while
dependency_links is needed until #26914 is fixed. (#27704)

	documentation cleanup (#27773)

	split, merge, simplify, extend, reorganize sections and files

	generate scales as Torflow by default (#27976)

	Replace stem dependency_links by stem 1.7.0 (#27705). This also
eliminates the need for custom install_command in tox.

v0.7.0 (2018-08-09)

Important changes:

	cleanup/stale_days is renamed to
cleanup/data_files_compress_after_days

	cleanup/rotten_days is renamed to
cleanup/data_files_delete_after_days

	sbws now takes as an argument the path to a config file (which
contains sbws_home) instead of sbws_home (which contains the
path to a config file)

Added

	Log line on start up with sbws version, platform info, and library
versions (trac#26751)

	Manual pages (#26926)

Fixed

	Stop deleting the latest.v3bw symlink. Instead, do an atomic rename.
(#26740)

	State file for storing the last time sbws scanner was started,
and able to be used for storing many other types of state in the
future. (GH#166)

	Log files weren’t rotating. Now they are. (#26881)

Changed

	Remove test data v3bw file and generate it from the same test.
(#26736)

	Stop using food terms for cleanup-related config options

	cleanup command now cleans up old v3bw files too (#26701)

	Make sbws more compatible with system packages: (#26862)

	Allow a configuration file argument

	Remove directory argument

	Create minimal user configuration when running

	Do not require to run a command to initialize

	Initialize directories when running

	Do not require configuration file inside directories specified by the
configuration

v0.6.0 (2018-07-11)

Important changes:

	The way users configure logging has changed. No longer are most users
expected to be familiar with how to configure python’s standard
logging library with a config file. Instead we’ve abstracted out the
setting of log level, format, and destinations to make these settings
more accessible to users. Expert users familiar with the logging
config file
format [https://docs.python.org/3/library/logging.config.html#logging-config-fileformat]
can still make tweaks.

Summary of changes:

	Make logging configuration easier for the user.

	Add UML diagrams to documentation. They can be found in
docs/source/images/ and regenerated with make umlsvg in docs/.

Added

	UML diagrams to documentation. In docs/ run make umlsvg to
rebuild them. Requires graphviz to be installed.(GHPR#226)

	Add metadata to setup.py, useful for source/binary distributions.

	Add possibility to log to system log. (#26683)

	Add option to cleanup v3bw files. (#26701)

Fixed

	Measure relays that have both Exit and BadExit as non-exits, which is
how clients would use them. (GH#217)

	Could not init sbws because of a catch-22 related to logging
configuration. Overhaul how logging is configured. (GH#186 GHPR#224)

	Call write method of V3BWFile class from the object instance.
(#26671)

	Stop calculating median on empty list .(#26666)

Changed

	Remove is_controller_ok. Instead catch possible controller
exceptions and log them

Removed

	Two parsing/plotting scripts in scripts/tools/ that can now be found
at https://github.com/pastly/v3bw-tools

v0.5.0 (2018-06-26)

Important changes:

	Result format changed, causing a version bump to 4. Updating sbws to
0.5.0 will cause it to ignore results with version less than 4.

Summary of changes:

	Keep previously-generated v3bw files

	Allow a relay to limit its weight based on
RelayBandwidthRate/MaxAdvertisedBandwidth

	1 CPU usage optimization

	1 memory usage optimization

Added

	Use a relay’s {,Relay}BandwidthRate/MaxAdvertisedBandwidth as an
upper bound on the measurements we make for it. (GH#155)

	Ability to only consider results for a given relay valid if they came
from when that relay is using its most recent known IP address.
Thanks Juga. (GH#154 GHPR#199)

	Maintenance script to help us find functions that are (probably) no
longer being called.

	Integration test(s) for RelayPrioritizer (GHPR#206)

	Git/GitHub usage guidelines to CONTRIBUTING document (GH#208
GHPR#215)

Fixed

	Make relay priority calculations take only ~5% of the time they used
to (3s vs 60s) by using sets instead of lists when selecting
non-Authority relays. (GH#204)

	Make relay list refreshing take much less time by not allowing worker
threads to dogpile on the CPU. Before they would all start requesting
descriptors from Tor at roughly the same time, causing us to overload
our CPU core and make the process take unnecessarily long. Now we let
one thread do the work so it can peg the CPU on its own and get the
refresh done ASAP. (GH#205)

	Catch a JSON decode exception on malformed results so sbws can
continue gracefully (GH#210 GHPR#212)

Changed

	Change the path where the Bandwidth List files are generated: now
they are stored in v3bw directory, named YYmmdd_HHMMSS.v3bw,
and previously generated ones are kept. A latest.v3bw symlink is
updated. (GH#179 GHPR#190)

	Code refactoring in the v3bw classes and generation area

	Replace v3bw-into-xy bash script with python script to handle a more
complex v3bw file format (GH#182)

v0.4.1 (2018-06-14)

Changed

	If the relay to measure is an exit, put it in the exit position and
choose a non-exit to help. Previously the relay to measure would
always be the first hop. (GH#181)

	Try harder to find a relay to help measure the target relay with two
changes. Essentially: (1) Instead of only picking from relays that
are 1.25 - 2.00 times faster than it by consensus weight, try (in
order) to find a relay that is at least 2.00, 1.75, 1.50, 1.25, or
v1.00 times as fast. If that fails, instead of giving up, (2) pick the
fastest relay in the network instead of giving up. This compliments
the previous change about measuring target exits in the exit
position.

Fixed

	Exception that causes sbws to fall back to one measurement thread. We
first tried fixing something in this area with 88fae60bc but
neglected to remember that .join() wants only string arguments
and can’t handle a None. So fix that.

	Exception when failing to get a relay’s ed25519_master_key from
Tor and trying to do .rstrip() on a None.

	earliest_bandwidth being the newest bw not the oldest (thanks
juga0)

	node_id was missing the character “$” at the beginning

Authors

The following people have contributed to Simple Bandwidth Scanner. Thank
you for helping make Tor better.

	anadahz

	George Kadianakis

	Georg Koppen

	juga

	Matt Traudt

	teor

Last updated: 2020-06-26 on d7a822bf

Simple Bandwidth Scanner - SBWS(1)

SYNOPSIS

sbws [Optional arguments] [Positional arguments]

sbws [-h] [–version]
[–log-level {debug,info,warning,error,critical}]
[-c CONFIG] {cleanup,scanner,generate,init,stats}

DESCRIPTION

Tor bandwidth scanner that generates bandwidth measurements files to be read by
the Directory Authorities.

The scanner requires a configuration file (see sbws.ini (5)) with a
with a ‘[destinations]’ section.

sbws can be run a python script or a system service.
The later is recommended.

The default locations of the files that sbws reads or generate depend on
on how it is run.
See the section FILES to know which are the default locations.

OPTIONS

Positional arguments

{cleanup,scanner,generate,init,stats}

These arguments can have additional optional arguments.
To obtain information about them, run: ‘sbws <positional argument> –help’.

Optional arguments

	-h, --help

	Show help message and exit.

	--version

	Show sbws version and exit.

	–log-level {debug,info,warning,error,critical}
	Override the sbws log level (default: info).

	-c CONFIG, --config CONFIG

	Path to a custom configuration file.

EXAMPLES

	sbws scanner
	Run the scanner using sbws defaults.

	sbws -c ~/.sbwsrc scanner
	Run the scanner using the configuration file in ~/.sbwsrc

	sbws –log-level debug generate
	Generate v3bw file in the default v3bw directory.

	sbws cleanup
	Cleanup datadir and v3bw files older than XX in the default v3bw directory.

FILES

In the following list, the first path is the default location when running
sbws as an script, the second path is the default location when running
sbws as a system service.

	$HOME/.sbws.ini or /etc/sbws/sbws.ini
	Location where sbws searches for a custom configuration file, when the
option –config is not provided.

	$HOME/.sbws or /var/lib/sbws
	Location where sbws writes/reads measurement data files,
bandwidth list files and tor process data.

Under this directory, sbws creates the following subdirectories:

	datadir
	Raw results generated by the sbws scanner.
Other commands (such as generate and stats) read results from
this directory.

	log
	Log files generated by sbws, when logging to a file is configured
(see sbws.ini).

	v3bw
	Bandwidth files generated by sbws generate. These are the files
read by the Tor directory authorities.

	tor
	Data generated by the tor process launched by sbws.

	$HOME/.sbws/tor or /run/sbws/tor
	Location where the tor process launched by sbws scanner stores
temporal files, like Unix domain sockets.

SEE ALSO

sbws.ini (5), https://tpo.pages.torproject.net/network-health/sbws,
https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt,
tor (1).

BUGS

Please report bugs at https://gitlab.torproject.org/tpo/network-health/sbws/-/issues/.

Simple Bandwidth Scanner - SBWS.INI(5)

DESCRIPTION

Tor bandwidth scanner configuration file.

sbws (1) scanner command requires a configuration file with the
“[scanner]”, “[destinations]” “[destination.<name>]” sections.

There must be at least one “[destination.<name>]”.

See an EXAMPLES below for a minimal configuration.

SECTIONS

	general
	
	data_period = INT
	Days into the past that measurements are considered valid. (Default: 5)

	http_timeout = INT
	Timeout in seconds to give to the python Requests library. (Default: 10)

	circuit_timeout = INT
	Timeout in seconds to create circuits. (Default: 60)

	reset_bw_ipv4_changes = {on, off}
	Whether or not to reset the bandwidth measurements when the relay’s IP
address changes. If it changes, we only consider results for the relay that
we obtained while the relay was located at its most recent IP address.
(Default: off)

	reset_bw_ipv6_changes = off
	NOT implemented for IPv6.

paths

When sbws is run as a system service, ~/.sbws is changed to
/var/lib/sbws.

	sbws_home = STR
	sbws home directory. (Default: ~/.sbws)

	datadir = STR
	Directory where sbws stores temporal bandwidth results files.
(Default: ~/.sbws/datadir)

	v3bw_dname = STR
	Directory where sbws stores the bandwidth list files.
These are the files to be read by the Tor Directory Authorities.
(Default: ~/.sbws/v3bw)

	v3bw_fname = STR
	File names of the bandwidth list files.
The latest bandwidth file is symlinked by latest.v3bw

	state_fname = STR
	File path to store the timestamp when the scanner was last started.
(Default: ~/.sbws/state.dat)

	log_dname = STR
	Directory where to store log files when logging to files is enabled.
(Default: ~/.sbws/log)

destinations

It is required to set at least one destination for the scanner to run.
It is recommended to set several destinations so that the scanner can
continue if one fails.

	STR = {on, off}
	Name of destination. It is a name for the Web server from where to
download files in order to measure bandwidths.

	usability_test_interval = INT
	How often to check if a destination is usable (Default: 300)

	destinations.STR
	
	url = STR
	The URL to the destination. It must include a file path.
It can use both http or https.

	verify = BOOL
	Whether or not to verify the destination certificate.
(Default: True)

	country = STR
	ISO 3166-1 alpha-2 country code.
Use ZZ if the destination URL is a domain name and it is in a CDN.

tor

When sbws is run as a system service ~/.sbws/tor is replaced by
/run/sbws/tor.

	datadir = STR
	sbws’ owned tor directory. (Default: ~/.sbws/tor)

	control_socket = STR
	sbws’s owned tor control socket file.
(Default: ~/.sbws/tor/sbws/control)

	pid = STR
	sbws’s owned tor pid file. (Default: ~/.sbws/tor/sbws/tor.pid)

	log = STR
	sbws’s owned tor directory log files. (Default: ~/.sbws/tor/log)

	external_control_port = INT
	tor control port to connect to. Useful to run integration tests with
chutney.
(Default: not set. If set, it takes preference over the control socket)

	extra_lines =
	sbws’s tor extra configuration. (Default: None)

	scanner
	
	nickname = STR
	A human-readable string with chars in a-zA-Z0-9 to identify the scanner.
(Default: IDidntEditTheSBWSConfig)

	country = STR
	ISO 3166-1 alpha-2 country code.
(Default: AA, a non existing country to detect it was not edited)

	download_toofast = INT
	Limits on what download times are too fast/slow/etc. (Default: 1)

	download_min = INT
	Limits on what download times are too fast/slow/etc. (Default: 5)

	download_target = INT
	Limits on what download times are too fast/slow/etc. (Default: 6)

	download_max = INT
	Limits on what download times are too fast/slow/etc. (Default: 10)

	num_rtts = INT
	How many RTT measurements to make. (Default: 0)

	num_downloads = INT
	Number of downloads with acceptable times we must have for a relay before
moving on. (Default: 5)

	initial_read_request = INT
	The number of bytes to initially request from the server. (Default: 16384)

	measurement_threads = INT
	How many measurements to make in parallel. (Default: 3)

	min_download_size = INT
	Minimum number of bytes we should ever try to download in a measurement.
(Default: 1)

	max_download_size = INT
	Maximum number of bytes we should ever try to download in a measurement.
(Default: 1073741824) 1073741824 == 1 GiB

	relayprioritizer
	
	measure_authorities = {on, off}
	Whether or not to measure authorities. (Default: off)

	fraction_relays = FLOAT
	The target fraction of best priority relays we would like to return.
0.05 is 5%. In a 7000 relay network, 5% is 350 relays. (Default: 0.05)

	min_relays = INT
	The minimum number of best priority relays we are willing to return.
(Default: 50)

	cleanup
	
	data_files_compress_after_days = INT
	After this many days, compress data files. (Default: 29)

	data_files_delete_after_days = INT
	After this many days, delete data files. (Default: 57)

	v3bw_files_compress_after_days = INT
	After this many days, compress v3bw files. (Default: 1)

	v3bw_files_delete_after_days = INT
	After this many days, delete v3bw files. (Default: 7)

	logging
	
	to_file = {yes, no}
	Whether or not to log to a rotating file the directory paths.log_dname.
(Default: yes)

	to_stdout = {yes, no}
	Whether or not to log to stdout. (Default: yes)

	to_syslog = {yes, no}
	Whether or not to log to syslog. (Default: no)
NOTE that when sbws is launched by systemd, stdout goes to journal and
syslog.

	to_file_max_bytes = INT
	If logging to file, how large (in bytes) should the file be allowed to get
before rotating to a new one. 10485760 is 10 MiB. If zero or number of
backups is zero, never rotate the log file. (Default: 10485760)

	to_file_num_backups = INT
	If logging to file, how many backups to keep. If zero or max bytes is zero,
never rotate the log file. (Default: 50)

	level = {debug, info, warning, error, critical}
	Level to log at. (Default: debug)

	to_file_level = {debug, info, warning, error, critical}
	Level to log at when using files. (Default: debug)

	to_stdout_level = {debug, info, warning, error, critical}
	Level to log at when using stdout. (Default: info)

	to_syslog_level = {debug, info, warning, error, critical}
	Level to log at when using syslog. (Default: info)

	format = STR
	Format string to use when logging.
(Default: %(asctime)s %(module)s[%(process)s]: <%(levelname)s> %(message)s)

	to_stdout_format = STR
	Format string to use when logging to stdout. (Default: ${format})

	to_syslog_format = STR
	Format string to use when logging to syslog.
(Default: %(module)s[%(process)s]: <%(levelname)s> %(message)s)

	to_file_format = STR
	Format string to use when logging to files.
(Default: %(asctime)s %(levelname)s %(threadName)s %(filename)s:%(lineno)s - %(funcName)s - %(message)s)

EXAMPLES

Example destinations section:

[scanner]
nickname = Manual
country = US

[destinations]
foo = on
bar = on
baz = off

[destinations.foo]
using HTTP
url = http://example.org/sbws.bin
country = ZZ
verify = False

[destinations.bar]
using HTTPS
url = https://example.com/data
country = SN

[destinations.baz]
this will be ignored
url = https://example.net/ask/stan/where/the/file/is.exe
country = TH

FILES

	$HOME/.sbws.ini
	Default sbws user configuration path.

Any other path to the configuration file can be specified using the
sbws argument -c

SEE ALSO

sbws (1), https://tpo.pages.torproject.net/network-health/sbws.

BUGS

Please report bugs at https://gitlab.torproject.org/tpo/network-health/sbws/-/issues/.

Contributing to Simple Bandwidth Scanner

Thank you for your interest in Simple Bandwidth Scanner (sbws).

Examples of contributions include:

	Bug reports, feature requests

	Code/documentation patches

Bug reports or feature requests

	Check that it has not been already reported.

	Open a issue in
Tor Project Gitlab [https://gitlab.torproject.org/tpo/network-health/sbws/-/issues] .

Code/documentation patches

The sbws canonical repository is https://gitweb.torproject.org/sbws.git,
but we review patches using the Gitlab repository
(https://gitlab.torproject.org/tpo/network-health/sbws/-/merge_requests)
Merge Requests (MR).

To know more about sbws code,

See also

	Developer/technical documentation

	./docs/source/testing.rst (or testing
or Installing tests dependencies and running tests).

	./docs/source/documenting.rst (or documenting
or Installing and building the documentation).

The following are guidelines we aim to follow.

Steps to create a MR

	Create a issue in Tor Project Gitlab (Open issue)

	Fork sbws via the Gitlab web interface:
https://gitlab.torproject.org/tpo/network-health/sbws

	Clone the repository locally

	Install sbws as explained in ./INSTALL.rst and ./TESTING.rst
Use pip install -e <>

	If needed install the documentation and build it as explained in
./DOCUMENTATION.rst

	Create a new feature branch.
If the issue solves a bug, base the branch on the latest maintained version,
eg. maint-1.1 and name it with the name of the base branch plus
_bugXXX, where XXX is the number of the issue.
If the issue is a new feature, base the branch on the master branch and
name it ticketXXX.
Optionally, the last part of the branch name can be any string, eg.
maint-1.1_bugXXX_contributing.

	Write code (Code style), tests, documentation,
extra files (Extra required files), commit (Commits), etc.

	Ensure tests pass (./TESTING.rst).

	Push your branch to your Gitlab repository.

	Ensure the CI tests are passing
(https://gitlab.torproject.org/tpo/network-health/sbws/-/pipelines)

Finally:

	Create a MR from your branch at
https://gitlab.torproject.org/tpo/network-health/sbws

Code style

Follow the Zen of Python (PEP 20 [https://www.python.org/dev/peps/pep-0020])

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.

Code should adhere to the PEP 8 [https://www.python.org/dev/peps/pep-0008] guidelines.
Before release 1.0.0, some guidelines have not been followed,
such as the ordering the inputs (PEP 8#imports [https://www.python.org/dev/peps/pep-0008#imports]).

External link: Code Style [https://docs.python-guide.org/writing/style/]

All functions, methods and classes should have PEP 0257 [https://www.python.org/dev/peps/pep-0257]
(except __repr__ and __str__).
Before release 1.0.0, some docstrigs do not have 3 double quotes """
(PEP 0257#id15 [https://www.python.org/dev/peps/pep-0257#id15]).

External link: Documentation [https://docs.python-guide.org/writing/documentation/]

New features should add a corresponding documentation in /docs.

An editor compatible with EditorConfig [https://editorconfig.org/] will
help you to follow the general formatting code style.

Timestamps must be in UTC. It is preferred to use datetime objects or
Unix timestamps. Timestamps read by the user should be always formatted in
ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601]

Functional style is preferred:

	use list comprenhensions lambda, map, reduce

	avoid reasigigning variables, instead create new ones

	use deepcopy when passing list of objects to a function/method

	classes should change attributes only in one method (other than __init__?)

[FUNC]

In general, do not reinvent the wheel, use Python native modules as logging,
instead of implementing similar functionality.
Or use other packages when the new dependency can be extra, for instance
vulture [https://pypi.org/project/vulture/].

Extra required files

Any non-trivial change should contain tests. See ./TESTING.rst.
When running tests, currently flake8 informs on some PEP8 errors/warnings,
but not all.

Commits

Each commit should reference the Tor Project Gitlab issue (example: #12345)
and possibly the bugfix version.
The commit message should contain Closes: #bugnumber.

From version 1.0.2 we started to prefix the summary with the subpackage or
component, though we have not standardized the words to use, eg: scanner,
generate, v3bwfile, relaylist, doc, test, CI.

From version 1.0.3, we also started to prefix the summary with new,
fix or chg, so that gitchangelog [https://github.com/vaab/gitchangelog] automatically generates different
sections in the CHANGELOG.

From version 1.1.0 we started to use the words new, chg and fix,
not in the sense gitchangelog [https://github.com/vaab/gitchangelog] use them, but to match semantic versioning
changes major, minor and patch.

Try to make each commit a logically separate changes.:

As a general rule, your messages should start with a single line that’s
o more than about 50 characters and that describes the changeset concisely,
followed by a blank line, followed by a more detailed explanation.
The Git project requires that the more detailed explanation include
your motivation for the change and contrast its implementation with
previous behavior — this is a good guideline to follow.
It’s also a good idea to use the imperative present tense in these messages.
In other words, use commands.
Instead of "I added tests for" or "Adding tests for," use "Add tests for."

[DIST]

Template originally written by Tim Pope [https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html]: example commit

Code being reviewed workflow

When a MR is being reviewed, new changes might be needed:

	If the change does not modify a previous change, create new commits and push.

	If the change modifies a previous change and it’s small,
git commit fixup [https://git-scm.com/docs/git-commit#Documentation/git-commit.txt---fixupltcommitgt]
should be used. When it is agreed that the MR is ready, create a new branch
named mybranch_02 and run:

rebase --autosquash

push, create new MR and close old MR mentioning the number of the new MR.

	If the review takes long and when it’s ready code related to the MR has changed
in master, create a new branch named mybranch_02 and run:

rebase master

push, create new MR and close old MR mentioning the number of the new MR.

[MERG]

Reviewing code

All code should be peer-reviewed. Two reasons for this are:

Because a developer cannot think of everything at once;
Because a fresh pair of eyes may spot an error, a corner-case in the code,
insufficient documentation, a missing consistency check, etc.

[REVI]

Reviewers:

	Should let the contributor know what to improve/change.

	Should not push code to the contributor’s branch.

	Should wait for contributor’s changes or feedback after changes are requested,
before merging or closing a MR.

	Should merge (not rebase) the MR.

	If rebase is needed due to changes in master, the contributor should create
a new branch named xxx_rebased based on the reviewed branch, rebase and
create a new MR from it, as explained above.

	If new changes are needed when the contributor’s branch is ready to merge,
the reviewer can create a new branch based on the contributor’s branch,
push the changes and merge that MR.
The contributor should be notified about it.

	If the reviewer realize that new changes are needed after the MR has been
merged, the reviewer can push to master, notifying the contributor about the
changes.

	Because currently there are not many reviewers, reviewers can merge their own
MR if there was not any feedback after a week.

	Should not push directly to master, unless changes are trivial (typos,
extra spaces, etc.)

	Should not push to master new features while there are open MRs to review.

Currently, the reviewers are gk [https://gitlab.torproject.org/gk],
ahf [https://gitlab.torproject.org/ahf],
juga [https://gitlab.torproject.org/juga].

Releases

Releases follow semantic versioning [https://semver.org/].
Until release 1.0.0 is reached, this project is not considered production
ready.

Currently development happens in master, this might change from release 1.0.0

so that master has the last release changes, and development happens in the
next release branch.

Before major releases, ensure that:

	Installation from scratch, as specified in ./INSTALL.md, must success.

	All tests must pass.

	Tor must be able to parse the produced bw files
(current way is manual)

Todo

Test that run Tor as dirauth and parse the files

	Bandwidth files must produce graphs compatible with Torflow
(current way to test it is manual)

Todo

Implement something to compare error with current consensus.

	A dirauth should be able to understand the documentation, otherwise the
documentation should be clarified.

Create a ./CHANGELOG.rst file.
Each entry should reference the Tor Project Gitlab issue (example: #12345)
and possibly the bugfix version.
Until version 1.0.2 we have followed keep a changelog [https://keepachangelog.com/en/1.0.0/] format.

From version 1.1.x, run ./scripts/maint/release.py to create new releases.
It uses gitchangelog [https://github.com/vaab/gitchangelog] to automatically add new CHANGELOG entries from the
commits’ messages.

Example commit message

Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to
about 72 characters or so. In some contexts, the first
line is treated as the subject of an email and the rest of
the text as the body. The blank line separating the
summary from the body is critical (unless you omit the body
entirely); tools like rebase can get confused if you run
the two together.

Further paragraphs come after blank lines.

 - Bullet points are okay, too

 - Typically a hyphen or asterisk is used for the bullet,
 preceded by a single space, with blank lines in
 between, but conventions vary here

External references

	DIST

	https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project

	MERG

	https://www.atlassian.com/git/tutorials/merging-vs-rebasing

	REVI

	https://doc.sagemath.org/html/en/developer/reviewer_checklist.html

	FUNC

	https://medium.com/@rohanrony/functional-programming-in-python-1-lambda-map-filter-reduce-zip-8739ea144186

Installing tests dependencies and running tests

To run the tests, extra Python dependencies are needed:

	Flake8 [https://flake8.readthedocs.io/]

	tox [https://tox.readthedocs.io]

	pytest [https://docs.pytest.org/]

	coverage [https://coverage.readthedocs.io/]

To install them from sbws

pip install .[dev] && pip install .[test]

To run the tests:

tox

Installing and building the documentation

To build the documentation, extra Python dependencies are needed:

	Sphinx [https://www.sphinx-doc.org]

	Pylint [https://www.pylint.org/] (only to update the diagrams)

To install them from sbws:

pip install .[doc]

To build the documentation as HTML:

cd docs/ && make html

The generated HTML will be in docs/build/.

To build the manual (man) pages:

cd docs/ && make man

The generated man pages will be in docs/man/.

To build the documentation diagrams:

cd docs/ && make umlsvg

The generated diagrams will be in docs/build/_images/.

To convert the LaTeX mathematical formulae to images, extra system dependencies
are needed:

	Core and Extra Tex [https://www.tug.org/texlive/acquire.html] Live packages

	dvipng [https://www.nongnu.org/dvipng/]

They are included in most distributions. In Debian install them running:

apt install texlive-latex-extra dvpipng

How sbws works

Overview

The scanner measures the bandwidth of each relay in the Tor network
(except the directory authorities) by creating a two hops circuit
with the relay. It then measures the bandwidth by downloading data
from a destination Web Server and stores the measurements.

The generator read the measurements, aggregates, filters and
scales them using torflow’s scaling method.

Then it generates a bandwidth list file that is read
by a directory authority to report relays’ bandwidth in its vote.

[image: _images/scanner.svg][image: _images/dirauths_bwauths.png]

Initialization

	Parse the command line arguments and configuration files.

	Launch a Tor thread with an specific configuration or connect to a running
Tor daemon that is running with a suitable configuration.

	Obtain the list of relays in the Tor network from the Tor consensus and
descriptor documents.

	Read and parse the old bandwidth measurements stored in the file system.

	Select a subset of the relays to be measured next, ordered by:

	relays not measured.

	measurements age.

[image: data sources]Classes used in the initialization:

[image: classes initializing data]Source code: sbws.core.scanner.run_speedtest()

Measuring relays

	For every relay:

	Select a second relay to build a Tor circuit.

	Build the circuit.

	Make HTTPS GET requests to the Web server over the circuit.

	Store the time the request took and the amount of bytes requested.

[image: activity measuring relays]Source code: sbws.core.scanner.measure_relay()

Measuring a relay

[image: activity measuring a relay]Source code: sbws.core.scanner.measure_relay()

Selecting a second relay

	If the relay to measure is an exit, use it as an exit and obtain the
non-exits.

	If the relay to measure is not an exit, use it as first hop and obtain
the exits.

	From non-exits or exits, select one randomly from the ones that have
double consensus bandwidth than the relay to measure.

	If there are no relays that satisfy this, lower the required bandwidth.

[image: activity select second relay]Source code: sbws.core.scanner.measure_relay()

Selecting the data to download

	While the downloaded data is smaller than 1GB or the number of download
is minor than 5:

	Randomly, select a 16MiB range.

	If it takes less than 5 seconds, select a bigger range and don’t keep any
information.

	If it takes more than 10 seconds, select an smaller range and don’t keep any
information.

	Store the number of bytes downloaded and the time it took.

Source code: sbws.core.scanner._should_keep_result()

Writing the measurements to the filesystem

For every measured relay, the measurement result is put in a queue.
There’s an independent thread getting measurements from the queue every second.
Every new measurement is appended to a file as a json line
(but the file itself is not json!).
The file is named with the current date. Every day a new file is created.

Source code: sbws.lib.resultdump.ResultDump.enter()

See also

How aggregation and scaling works.

How aggregation and scaling works

See also

How sbws works (scanner part).

Every hour, the generator:

	Aggregate all the measurements (not older than 6 six days) for every relay.

	Filter the measurements

	Scale the measurements

	Write the bandwidth file

Source code: sbws.lib.v3bwfile.V3BWFile.from_results()

Filtering the bandwidth measurements

Each relay bandwidth measurements are selected in the following way:

	At least two bandwidth measurements (Result s) MUST have been obtained
within an arbitrary number of seconds (currently one day).
If they are not, the relay MUST NOT be included in the Bandwidth File.

	The measurements than are are older than an arbitrary number of seconds
in the past MUST be discarded.
Currently this number is the same as data_period (5 days) when not
scaling as Torflow and 28 days when scaling as Torflow.

If the number of relays to include in the Bandwidth File are less than
a percententage (currently 60%) than the number of relays in the consensus,
additional Header Lines MUST be added (see XXX) to the Bandwidth File and the
relays SHOULD NOT be included.

[image: _images/activity_aggr_file.svg][image: _images/activity_aggr_lines.svg]

Scaling the bandwidth measurements

Consensus bandwidth obtained by new implementations MUST be comparable to the
consensus bandwidth, therefore they MUST implement torflow_scaling [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/README.spec.txt#n298].

The bandwidth_file_spec [https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt] appendix B describes torflow scaling and a linear
scaling method.

[image: _images/activity_scaling_as_torflow.svg]
See also

Torflow aggregation and scaling and Differences between Torflow and sbws.

Writing the bandwidth file

The bandwidth file format is defined in the bandwidth_file_spec [https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt].

Torflow aggregation and scaling

See also

How aggregation and scaling works and Differences between Torflow and sbws.

Torflow aggregation or scaling goal is:

From Torflow’s README.spec.txt [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/README.spec.txt] (section 2.2):

In this way, the resulting network status consensus bandwidth values
are effectively re-weighted proportional to how much faster the node
was as compared to the rest of the network.

Initialization

Constants in consensus that Torflow uses and don’t change:

bandwidth-weights Wbd=0 Wbe=0 [] Wbm=10000 Wdb=10000 Web=10000 Wed=10000 Wee=10000 Weg=10000 Wem=10000 Wgb=10000 Wgd=0 Wgg=5852 [] Wmb=10000 Wmd=0 Wme=0 [] Wmm=10000

params [] bwauthpid=1

Constants in the code:

IGNORE_GUARD = 0
GUARD_SAMPLE_RATE = 2*7*24*60*60 # 2wks
MAX_AGE = 2*GUARD_SAMPLE_RATE; # 4 weeks

K_p = 1.0
T_i = 0
T_i_decay = 0
T_d = 0

Initialization ConsensusJunk:

self.bwauth_pid_control = True
self.group_by_class = False
self.use_pid_tgt = False
self.use_circ_fails = False
self.use_best_ratio = True
self.use_desc_bw = True
self.use_mercy = False
self.guard_sample_rate = GUARD_SAMPLE_RATE
self.pid_max = 500.0
self.K_p = K_p = 1.0
self.T_i = T_i = 0
self.T_d = T_d = 0
self.T_i_decay = T_i_decay = 0

self.K_i = 0
self.K_d = self.K_p*self.T_d = 0

Initialization Node:

self.sbw_ratio = None
self.fbw_ratio = None
self.pid_bw = 0
self.pid_error = 0
self.prev_error = 0
self.pid_error_sum = 0
self.pid_delta = 0
self.ratio = None
self.new_bw = None
self.use_bw = -1
self.flags = ""

measurement vars from bwauth lines
self.measured_at = 0
self.strm_bw = 0
self.filt_bw = 0
self.ns_bw = 0
self.desc_bw = 0
self.circ_fail_rate = 0
self.strm_fail_rate = 0
self.updated_at = 0

[image: _images/activity_torflow_aggr.svg]

Descriptor values for each relay

From TorCtl.py [https://gitweb.torproject.org/pytorctl.git/tree/TorCtl.py] code, it is the minimum of all the descriptor bandwidth
values:

bws = map(int, g)
bw_observed = min(bws)

[snip]

return Router(ns.idhex, ns.nickname, bw_observed, dead, exitpolicy,
ns.flags, ip, version, os, uptime, published, contact, rate_limited,
ns.orhash, ns.bandwidth, extra_info_digest, ns.unmeasured)

ns.bandwidth is the consensus bandwidth, already multiplied by 1000:

yield NetworkStatus(*(m.groups()+(flags,)+(int(w.group(1))*1000,))+(unmeasured,))

Because of the matched regular expression, bws is not all the descriptor
bandwidth values, but the average bandwidth and the observed bandwidth, ie., it
does not take the average burst, what seems to be a bug in Torflow.

Eg. bandwidth line in a descriptor:

bandwidth 1536000 4096000 1728471

Only takes the first and last values, so:

bw_observed = min(bandwidth-avg, bandwidth-observed)

This is passed to Router, in which the descriptors bandwidth is assigned to
the consensus bandwidth when there is no consensus bandwidth:

(idhex, name, bw, down, exitpolicy, flags, ip, version, os, uptime,
 published, contact, rate_limited, orhash,
 ns_bandwidth,extra_info_digest,unmeasured) = args

[snip]

if ns_bandwidth != None:
 self.bw = max(ns_bandwidth,1) # Avoid div by 0
else:
 self.bw = max(bw,1) # Avoid div by 0

[snip]

self.desc_bw = max(bw,1) # Avoid div by 0

So:

self.bw = ns_bwandwidth or min(bandwidth-avg, bandwidth-observed) or 1
desc_bw = min(bandwidth-avg, bandwidth-observed) or 1

And written by SQLSupport.py [https://gitweb.torproject.org/pytorctl.git/tree/SQLSupport.py#n493] as descriptor and conensus bandwidth:

f.write(" desc_bw="+str(int(cvt(s.avg_desc_bw,0))))
f.write(" ns_bw="+str(int(cvt(s.avg_bw,0)))+"\n")

Descriptor bandwidth with PID control

Even though README.spec.txt [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/README.spec.txt] talks about the consensus bandwidth, in
aggregate.py [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/aggregate.py] code, the consensus bandwidth is never used, since
use_desc_bw is initialized to True and never changed:

if cs_junk.bwauth_pid_control:
 if cs_junk.use_desc_bw:
 n.use_bw = n.desc_bw
 else:
 n.use_bw = n.ns_bw

So:

n.use_bw = n.desc_bw = min(bandwidth-avg, bandwidth-observed) or 1

Scaling the raw measurements

Overview

This diagram also includes
Descriptor bandwidth with PID control,
Ratio for each relay and Scaled bandwidth for each relay with PID control.

[image: _images/activity_torflow_scaling_simplified1.svg]Simplified image from:

[image: _images/activity_torflow_scaling_simplified.svg]./_images/activity_torflow_scaling_simplified.svg

[image: _images/activity_torflow_scaling.svg]./_images/activity_torflow_scaling.svg

Stream and filtered bandwidth for each relay

They are calculated in the same way whether or not PID controller [https://en.wikipedia.org/wiki/PID_controller] feedback
is used.

From Torflow’s README.spec.txt [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/README.spec.txt] (section 1.6):

The strm_bw field is the average (mean) of all the streams for the relay
identified by the fingerprint field.

The filt_bw field is computed similarly, but only the streams equal to
or greater than the strm_bw are counted in order to filter very slow
streams due to slow node pairings.

In the code, SQLSupport.py [https://gitweb.torproject.org/pytorctl.git/tree/SQLSupport.py#n493], strm_bw is sbw and
filt_bw is filt_sbws:

for rs in RouterStats.query.filter(stats_clause).\
 options(eagerload_all('router.streams.circuit.routers')).all():
 tot_sbw = 0
 sbw_cnt = 0
 for s in rs.router.streams:
 if isinstance(s, ClosedStream):
 skip = False
 #for br in badrouters:
 # if br != rs:
 # if br.router in s.circuit.routers:
 # skip = True
 if not skip:
 # Throw out outliers < mean
 # (too much variance for stddev to filter much)
 if rs.strm_closed == 1 or s.bandwidth() >= rs.sbw:
 tot_sbw += s.bandwidth()
 sbw_cnt += 1

if sbw_cnt: rs.filt_sbw = tot_sbw/sbw_cnt
else: rs.filt_sbw = None

This is also expressed in pseudocode in the bandwidth file spec [https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt], section B.4
step 1.

Calling bwstrm_i to strm_bw and bwfilt_i to filt_bw,
if bw_j is a measurement for a relay i, then::

bwstrm_i = mean(bw_j) # for a relay, the average of all its measurements
bwfilt_i = mean(max(bwstrm_i, bw_j))

Stream and filtered bandwidth for all relays

From README.spec.txt [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/README.spec.txt] (section 2.1):

Once we have determined the most recent measurements for each node, we
compute an average of the filt_bw fields over all nodes we have measured.

In Torflow’s aggregate.py [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/aggregate.py] code:

for cl in ["Guard+Exit", "Guard", "Exit", "Middle"]:
 c_nodes = filter(lambda n: n.node_class() == cl, nodes.itervalues())
 if len(c_nodes) > 0:
 true_filt_avg[cl] = sum(map(lambda n: n.filt_bw, c_nodes))/float(len(c_nodes))
 true_strm_avg[cl] = sum(map(lambda n: n.strm_bw, c_nodes))/float(len(c_nodes))
 true_circ_avg[cl] = sum(map(lambda n: (1.0-n.circ_fail_rate),
 c_nodes))/float(len(c_nodes))

The following code it’s actually used later to set the filt_avg and
strm_avg for each class:

filt_avg = sum(map(lambda n: n.filt_bw, nodes.itervalues()))/float(len(nodes))
strm_avg = sum(map(lambda n: n.strm_bw, nodes.itervalues()))/float(len(nodes))

Because cs_junk.group_by_class is False, it runs:

for cl in ["Guard+Exit", "Guard", "Exit", "Middle"]:
 true_filt_avg[cl] = filt_avg
 true_strm_avg[cl] = strm_avg
 true_circ_avg[cl] = circ_avg
 pid_tgt_avg[cl] = pid_avg

So filt_avg and strm_avg are calculated not by class in either case,
with and without PID control.

Calling bwstrm to strm_avg and bwfilt to fitl_avg, without
taking into account the different types of nodes:

bwstrm = mean(bwstrm_i)
bwfilt = mean(bwfilt_i)

This is also expressed in pseudocode in the bandwidth file spec [https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt], section B.4
step 2.

Ratio for each relay

From README.spec.txt [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/README.spec.txt] (section 2.2):

These averages are used to produce ratios for each node by dividing the
measured value for that node by the network average.

In Torflow’s aggregate.py [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/aggregate.py] code:

for n in nodes.itervalues():
 n.fbw_ratio = n.filt_bw/true_filt_avg[n.node_class()]
 n.sbw_ratio = n.strm_bw/true_strm_avg[n.node_class()]

[snip]

Choose the larger between sbw and fbw
 if n.sbw_ratio > n.fbw_ratio:
 n.ratio = n.sbw_ratio
 else:
 n.ratio = n.fbw_ratio

So:

n.ratio = max(n.sbw_ratio, n.fbw_ratio)

This is also expressed in pseudocode in the bandwidth file spec [https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt], section B.4
step 2 and 3.

Scaled bandwidth for each relay without PID control

From README.spec.txt [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/README.spec.txt] (section 2.2):

These ratios are then multiplied by the most recent observed descriptor
bandwidth we have available for each node, to produce a new value for
the network status consensus process.

In aggregate.py [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/aggregate.py] code:

n.new_bw = n.desc_bw*n.ratio

So:

n.new_bw = (
 min(bandwidth-avg, bandwidth-observed) or 1 \
 * max(bwstrm_i / bwstrm, bwfilt_i / bwfilt)
)

This is also expressed in pseudocode in the bandwidth file spec [https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt], section B.4
step 5.

Scaled bandwidth for each relay with PID control

From README.spec.txt [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/README.spec.txt] section 3.1:

The bandwidth authorities measure F_node: the filtered stream
capacity through a given node (filtering is described in Section 1.6).

[snip]

pid_error = e(t) = (F_node - F_avg)/F_avg.

[snip]

new_consensus_bw = old_consensus_bw +
 old_consensus_bw * K_p * e(t) +
 old_consensus_bw * K_i * \integral{e(t)} +
 old_consensus_bw * K_d * \derivative{e(t)}

[snip]

For the case where K_p = 1, K_i=0, and K_d=0, it can be seen that this
system is equivalent to the one defined in 2.2, except using consensus
bandwidth instead of descriptor bandwidth:

 new_bw = old_bw + old_bw*e(t)
 new_bw = old_bw + old_bw*(F_node/F_avg - 1)
 new_bw = old_bw*F_node/F_avg
 new_bw = old_bw*ratio

In Torflow’s code, this is actually the case and most of the code is not
executed because the default K values.

It seems then that F_node is filt_bw in Torflow’s code or bwfilt_i
here, and F_avg is filt_avg in Torflow’s code or bwfilt here.

In aggregate.py [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/aggregate.py] code, pid error also depends on which of the ratios is
greater:

if cs_junk.use_best_ratio and n.sbw_ratio > n.fbw_ratio:
 n.pid_error = (n.strm_bw - true_strm_avg[n.node_class()]) \
 / true_strm_avg[n.node_class()]
 else:
 n.pid_error = (n.filt_bw - true_filt_avg[n.node_class()]) \
 / true_filt_avg[n.node_class()]

[snip]

n.new_bw = n.use_bw + cs_junk.K_p*n.use_bw*n.pid_error

So:

if (bwstrm_i / bwstrm) > (bwfilt_i / bwfilt):
 pid_error = (bwstrm_i - bwstrm) / bwstrm = (bwstrm_i / bwstrm) - 1
else:
 pid_error = (bwfilt_i - bwfilt_i) / bwfilt = (bwfilt_i / bwfilt) - 1

new_bw = use_bw + use_bw * pid_error

Or:

if (bwstrm_i / bwstrm) > (bwfilt_i / bwfilt):
 new_bw = use_bw + use_bw * ((bwstrm_i / bwstrm) - 1)
 new_bw = use_bw + use_bw * (bwstrm_i / bwstrm) - use_bw
 new_bw = use_bw * (bwstrm_i / bwstrm)
else:
 new_bw = use_bw + use_bw * ((bwfilt_i / bwfilt) - 1)
 new_bw = use_bw + use_bw * (bwfilt_i / bwfilt) - use_bw
 new_bw = use_bw * (bwfilt_i / bwfilt)

Or:

new_bw = use_bw * max(bwstrm_i / bwstrm, bwfilt_i / bwfilt)
new_bw = (
 min(bandwidth-avg, bandwidth-observed) or 1
 * max(bwstrm_i / bwstrm, bwfilt_i / bwfilt)
)

Note

So, the new scaled bandwidth is the same for both cases with and without
PID controller!

Other pid KeyValues in the Bandwidth File

Note

From the Overview it seems that the only variable needed to
calculate the new scaled bandwidth is the pid_error, and from
Descriptor bandwidth with PID control, it can be substituted
by the stream and filtered bandwidths.

This are the variables that can then be ignored:

pid_error_sum
pid_delta
prev_error

Limit scaled bandwidth for each relay

It’s calculated the same with and without PID control

Once each relay bandwidth is scaled, it is limited to a maximum, that is
calculated as the sum of all the relays in the current consensus scaled
bandwidth per 0.05.

From aggregate.py [https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/aggregate.py] code:

NODE_CAP = 0.05

[snip]

if n.idhex in prev_consensus:
 if prev_consensus[n.idhex].bandwidth != None:
 prev_consensus[n.idhex].measured = True
 tot_net_bw += n.new_bw

[snip]

if n.new_bw > tot_net_bw*NODE_CAP:
 [snip]
 n.new_bw = int(tot_net_bw*NODE_CAP)

Round the scaled bandwidth for each relay

Finally, the new scaled bandwidth is expressed in kilobytes and rounded a number
of digits.

Differences between Torflow and sbws

(Last updated 2020-02-18)

Aggregating measurements and scaling

Filtering

Torflow does not exclude relays because of having “few” measurements or “close”
to each other for that relay, like sbws does Filtering the bandwidth measurements.

However this is currently disabled in sbws.

Values from the previous Bandwidth File

sbws is not reading the previous Bandwidth File, but scaling all the values
with the raw measurements.

Instead, Torflow uses the previous Bandwidth File values in some cases:

	When a relay measurement is older than the one in the previous
Bandwidth File, it uses all the values from the previous Bandwidth File.
(how is possible that the Bandwidth File would have a newer measurements?):

self.new_bw = prev_vote.bw * 1000

Bandwidth File KeyValues

sbws does not calculate nor write to the Bandwidth file the pid variables
and KeyValues that are used in Torflow. Example of Torflow KeyValues not in sbws:

measured_at=1613547098 updated_at=1613547098 pid_error=11.275680184 pid_error_sum=11.275680184 pid_bw=23255048 pid_delta=11.0140582849 circ_fail=0.0

sbws does not have measured_at and updated_at either.

Currently the scaled bandwidth in Torflow does not depend on those extra values
and they seem to be just informative.

Code design

Todo

	Link to refactor proposal.

	Change this page when refactoring is implemented.

UML classes diagram

[image: UML classes diagram]classes_original.svg

Packages diagram

[image: packages diagram]packages_sbws.svg

scanner threads

	TorEventListener: the thread that runs Tor and listens for events.

	ResultDump: the thread that get the measurement results from a queue
every second.

	multiprocessing.ThreadPool starts 3 independent threads:
- workers_thread
- tasks_thread
- results_thread

	measurement threads: they execute sbws.core.scanner.measure_relay()
There’ll be a maximum of 3 by default.

[image: scanner threads]

Critical sections

Data types that are read or wrote from the threads.

[image: scanner critical sections]

Call graph

Initialization calls to the moment where the measurement threads start.

[image: call graph]
callgraph.png

The state.dat file

This file contains state that multiple sbws commands may want access to and
that needs to persist across processes. Both read and write access to this file
is wrapped in the State class, allowing for safe concurrent access: the
file is locked before reading or writing, and (for now) only simple data types
are allowed so we can be sure to update the state file on disk every time the
state is modified in memory.

At the time of writing, the following fields can exist in the state file.

scanner_started

The last time sbws scanner was started.

	Producer: sbws scanner, once at startup.

	Consumer: sbws generate, once each time it is ran.

Code: sbws.util.state.State

Internal code configuration files

Sbws has two default config files it reads: one general, and one specific to
logging.
They all get combined internally to the same conf structure.

It first reads the config file containing the default values for almost all
options. If you installed sbws in a virtual environment located at /tmp/venv,
then you will probably find the config.default.ini in a place such as
/tmp/venv/lib/python3.5/site-packages/sbws/ You should never edit this
file. The contents of this default config file can be found at the
bottom of this page.

Second, sbws will read config.log.default.ini. It will be located in
the same place as the previous file, and should not be edited like the
previous file. The contents of this default log config file can be found
at the bottom of this page. Options set here
overwrite options set in the previous config file.

Sbws then reads your custom config file. By default, it will search for it
in ~/.sbws.ini. Options in this file overwrite options set in previously
read config files.

The user example config file provided by sbws might look like this.

Listing 2 Example sbws.example.ini

Minimum configuration that needs to be customized
[scanner]
A human-readable string with chars in a-zA-Z0-9 to identify your scanner
nickname = sbws_default
ISO 3166-1 alpha-2 country code where the Web server destination is located.
Default AA, to detect it was not edited.
country = SN

[destinations]
With several destinations, the scanner can continue even if some of them
fail, which can be caused by a network problem on their side.
If all of them fail, the scanner will stop, which
will happen if there is network problem on the scanner side.

A destination can be disabled changing `on` by `off`
foo = on

[destinations.foo]
the domain and path to the 1GB file.
url = https://example.com/does/not/exist.bin
Whether to verify or not the TLS certificate. Default True
verify = False
ISO 3166-1 alpha-2 country code where the Web server destination is located.
Default AA, to detect it was not edited.
Use ZZ if the location is unknown (for instance, a CDN).
country = ZZ

Number of consecutive times that a destination could not be used to measure
before stopping to try to use it for a while that by default is 3h.
max_num_failures = 3

The following logging options are set by default.
There is no need to change them unless other options are preferred.
; [logging]
; # Whether or not to log to a rotating file the directory paths.log_dname
; to_file = yes
; # Whether or not to log to stdout
; to_stdout = yes
; # Whether or not to log to syslog
; # NOTE that when sbws is launched by systemd, stdout goes to journal and
; # syslog.
; to_syslog = no

; # Level to log at. Debug, info, warning, error, critical.
; # `level` must be set to the lower of all the handler levels.
; level = debug
; to_file_level = debug
; to_stdout_level = info
; to_syslog_level = info
; # Format string to use when logging
; format = %(module)s[%(process)s]: <%(levelname)s> %(message)s
; # verbose formatter useful for debugging
; to_file_format = %(asctime)s %(levelname)s %(threadName)s %(filename)s:%(lineno)s - %(funcName)s - %(message)s
; # Not adding %(asctime)s to to stdout since it'll go to syslog when using
; # systemd, and it'll have already the date.
; to_stdout_format = ${format}
; to_syslog_format = ${format}

To disable certificate validation, uncomment the following
verify = False

No other configuration files are read.

Default Configuration

Listing 3 config.default.ini

[paths]
sbws_home = ~/.sbws
datadir = ${sbws_home}/datadir
v3bw_dname = ${sbws_home}/v3bw
The latest bandwidth file is atomically symlinked to
V3BandwidthsFile ${v3bw_dname}/latest.v3bw
v3bw_fname = ${v3bw_dname}/{}.v3bw
state_fname = ${sbws_home}/state.dat
log_dname = ${sbws_home}/log

[destinations]
How often to check if a destional is usable
usability_test_interval = 300

[general]
Days into the past that measurements are considered valid
data_period = 5
Timeout in seconds to give to the python Requests library. It MUST be a
single float. Requests will use it both as the connect() timeout and the
timeout between bytes received from the server. See
http://docs.python-requests.org/en/master/user/advanced/#timeouts
http_timeout = 10
Timeout in seconds for waiting on a circuit to be built. It MUST be an
int. We will use this both as the CircuitBuildTimeout and a timeout
to give to stem for waiting on a circuit to be built since
CircuitBuildTimeout doesn't handle the case of a TLS connection to a relay
taking forever, and probably other not-yet-discovered cases.
circuit_timeout = 60
Whether or not to reset the bandwidth measurements when the relay's IP
address changes. If it changes, we only consider results for the relay that
we obtained while the relay was located at its most recent IP address.
This is NOT implemented for IPv6.
reset_bw_ipv4_changes = off
reset_bw_ipv6_changes = off

[scanner]
A human-readable string with chars in a-zA-Z0-9 to identify your scanner
nickname = IDidntEditTheSBWSConfig
ISO 3166-1 alpha-2 country code. To be edited.
Default to a non existing country to detect it was not edited.
country = AA
Limits on what download times are too fast/slow/etc.
download_toofast = 1
download_min = 5
download_target = 6
download_max = 10
How many RTT measurements to make
num_rtts = 0
Number of downloads with acceptable times we must have for a relay before
moving on
num_downloads = 5
The number of bytes to initially request from the server
initial_read_request = 16384
How many measurements to make in parallel
measurement_threads = 3
Minimum number of bytes we should ever try to download in a measurement
min_download_size = 1
Maximum number of bytes we should ever try to download in a measurement
1073741824 == 1 GiB
max_download_size = 1073741824

[tor]
datadir = ${paths:sbws_home}/tor
run_dpath = ${datadir}
control_socket = ${tor:run_dpath}/control
pid = ${tor:run_dpath}/tor.pid
note this is a directory
log = ${tor:datadir}/log
external_control_port =
extra_lines =

[cleanup]
After this many days, compress data files
#40017: To generate files as Torflow the result files must be kept for
GENERATE_PERIOD seconds.
The number of days after they are compressed or deleted could be added
as defaults (currently globals.py), and just as a factor of GENERATE_PERIOD.
data_files_compress_after_days = 29
After this many days, delete data files.
57 == 28 * 2 + 1.
data_files_delete_after_days = 57
After this many days, compress v3bw files (1d)
v3bw_files_compress_after_days = 1
After this many days, delete v3bw files (7d)
v3bw_files_delete_after_days = 7

[relayprioritizer]
Whether or not to measure authorities
measure_authorities = off
The target fraction of best priority relays we would like to return.
0.05 is 5%. In a 7000 relay network, 5% is 350 relays.
#
In a network of ~6500 relays and with a ResultDump containing 1 result per
relay, the best_priority() function takes ~11 seconds to complete on my
home desktop. Using this parameter allows us to balance between calling
best_priority() more often (but wasting more CPU), and calling it less
often (but taking longer to get back to relays with non-successful results).
#
Alternatively, we could rewrite best_priority() to not suck so much.
fraction_relays = 0.05
The minimum number of best priority relays we are willing to return
min_relays = 50

[logging]
Whether or not to log to a rotating file the directory paths.log_dname
to_file = yes
Whether or not to log to stdout
to_stdout = yes
Whether or not to log to syslog
NOTE that when sbws is launched by systemd, stdout goes to journal and
syslog.
to_syslog = no
If logging to file, how large (in bytes) should the file be allowed to get
before rotating to a new one. 10485760 is 10 MiB. If zero or number of
backups is zero, never rotate the log file.
to_file_max_bytes = 10485760
If logging to file, how many backups to keep. If zero or max bytes is zero,
never rotate the log file.
to_file_num_backups = 50
Level to log at. Debug, info, warning, error, critical.
`level` must be set to the lower of all the handler levels.
level = info
to_file_level = info
to_stdout_level = info
to_syslog_level = info
Format string to use when logging
format = %(asctime)s %(module)s[%(process)s]: <%(levelname)s> (%(threadName)s) %(message)s
to_stdout_format = ${format}
to_syslog_format = %(module)s[%(process)s]: <%(levelname)s> %(message)s
verbose formatter useful for debugging
to_file_format = %(asctime)s %(levelname)s (%(threadName)s) %(filename)s:%(lineno)s - %(funcName)s - %(message)s

If you know how to use
Python’s logging configuration file format [https://docs.python.org/3.5/library/logging.config.html#logging-config-fileformat],
then you can override or add to what is listed here by editing your config file.

Listing 4 config.log.default.ini

[loggers]
keys = root,sbws

[handlers]
keys = to_file,to_stdout,to_syslog

[formatters]
keys = to_file,to_stdout,to_syslog

[logger_root]
level = WARNING
handlers = to_file
propagate = 1
qualname=root

[logger_sbws]
propagate = 0
qualname=sbws

[handler_to_stdout]
class = StreamHandler
formatter = to_stdout
args = (sys.stdout,)

[handler_to_file]
class = handlers.RotatingFileHandler
formatter = to_file
args = ('/dev/null',)

for logging to system log
[handler_to_syslog]
class=handlers.SysLogHandler
formatter=to_syslog
args = ('/dev/log',)

[formatter_to_stdout]
format date as syslog and journal
datefmt = %b %d %H:%M:%S

[formatter_to_file]
datefmt = %b %d %H:%M:%S

[formatter_to_syslog]

Internal Tor configuration for the scanner

The scanner needs a specific Tor configuration.
The following options are either set when launching Tor or required when
connection to an existing Tor daemon.

Default configuration:

	SocksPort auto: To proxy requests over Tor.

	CookieAuthentication 1: The easiest way to authenticate to Tor.

	UseEntryGuards 0: To avoid path bias warnings.

	UseMicrodescriptors 0: Because full server descriptors are needed.

	SafeLogging 0: Useful for logging, since there’s no need for anonymity.

	LogTimeGranularity 1

	ProtocolWarnings 1

	FetchDirInfoEarly 1

	FetchDirInfoExtraEarly 1: Respond to MaxAdvertisedBandwidth as soon as possible.

	FetchUselessDescriptors 1: Keep fetching descriptors, even when idle.

	LearnCircuitBuildTimeout 0: To keep circuit build timeouts static.

Configuration that depends on the user configuration file:

	CircuitBuildTimeout ...: The timeout trying to build a circuit.

	DataDirectory ...: The Tor data directory path.

	PidFile ...: The Tor PID file path.

	ControlSocket ...: The Tor control socket path.

	Log notice ...: The Tor log level and path.

Configuration that needs to be set on runtime:

	__DisablePredictedCircuits 1: To build custom circuits.

	__LeaveStreamsUnattached 1: The scanner is attaching the streams itself.

Configuration that can be set on runtime and fail:

	ConnectionPadding 0: Useful for avoiding extra traffic, since scanner anonymity is not a goal.

Currently most of the code that sets this configuration is in sbws.util.stem.launch_tor()
and the default configuration is sbws/globals.py.

Note

the location of this code is being refactored.

Package API

Subpackages

	sbws.core package
	Submodules
	sbws.core.cleanup module

	sbws.core.generate module

	sbws.core.scanner module

	sbws.core.stats module

	Module contents

	sbws.lib package
	Submodules
	sbws.lib.circuitbuilder module

	sbws.lib.relaylist module

	sbws.lib.relayprioritizer module

	sbws.lib.resultdump module

	sbws.lib.v3bwfile module

	Module contents

	sbws.util package
	Submodules
	sbws.util.config module

	sbws.util.filelock module

	sbws.util.parser module

	sbws.util.state module

	sbws.util.stem module

	sbws.util.userquery module

	Module contents

Submodules

sbws.globals module

	
sbws.globals.fail_hard(*a, **kw)

	Log something … and then exit as fast as possible

	
sbws.globals.touch_file(fname, times=None)

	If fname exists, update its last access and modified times to now. If
fname does not exist, create it. If times are specified, pass them
to os.utime for use.

	Parameters

	
	fname (str) – Name of file to update or create

	times (tuple) – 2-tuple of floats for access time and modified time
respectively

sbws.core package

Submodules

sbws.core.cleanup module

Util functions to cleanup disk space.

	
sbws.core.cleanup.gen_parser(sub)

	Helper function for the broader argument parser generating code that adds
in all the possible command line arguments for the cleanup command.

	Parameters

	sub (argparse._SubParsersAction) – what to add a sub-parser to

	
sbws.core.cleanup.main(args, conf)

	Main entry point in to the cleanup command.

	Parameters

	
	args (argparse.Namespace) – command line arguments

	conf (configparser.ConfigParser) – parsed config files

sbws.core.generate module

	
sbws.core.generate.gen_parser(sub)

	

	
sbws.core.generate.main(args, conf)

	

sbws.core.scanner module

Measure the relays.

	
sbws.core.scanner.create_path_relay(relay, dest, rl, cb, relay_as_entry=True)

	

	
sbws.core.scanner.dispatch_worker_thread(*a, **kw)

	

	
sbws.core.scanner.dumpstacks()

	

	
sbws.core.scanner.error_no_circuit(circ_fps, nicknames, reason, relay, dest, our_nick)

	

	
sbws.core.scanner.error_no_helper(relay, dest, our_nick='')

	

	
sbws.core.scanner.force_get_results(pending_results)

	Try to get either the result or an exception, which gets logged.

It is call by wait_for_results() when
the time waiting for the results was long.

To get either the Result or an exception,
call get() with timeout.
Timeout is low since we already waited.

get is not call before, because it blocks and the callbacks
are not call.

	
sbws.core.scanner.gen_parser(sub)

	

	
sbws.core.scanner.get_random_range_string(content_length, size)

	Return a random range of bytes of length size. content_length is
the size of the file we will be requesting a range of bytes from.

For example, for content_length of 100 and size 10, this function will
return one of the following: ‘0-9’, ‘1-10’, ‘2-11’, […] ‘89-98’, ‘90-99’

	
sbws.core.scanner.main(args, conf)

	

	
sbws.core.scanner.main_loop(args, conf, controller, relay_list, circuit_builder, result_dump, relay_prioritizer, destinations, pool)

	Starts and reuse the threads that measure the relays forever.

It starts a loop that will be run while there is not and event signaling
that sbws is stopping (because of SIGTERM or SIGINT).

Then, it starts a second loop with an ordered list (generator) of relays
to measure that might a subset of all the current relays in the Network.

For every relay, it starts a new thread which runs measure_relay to
measure the relay until there are max_pending_results threads.
After that, it will reuse a thread that has finished for every relay to
measure.
It is the the pool method apply_async which starts or reuse a thread.
This method returns an ApplyResult immediately, which has a ready
methods that tells whether the thread has finished or not.

When the thread finish, ie. ApplyResult is ready, it triggers
result_putter callback, which put the Result in ResultDump
queue and complete immediately.

ResultDump thread (started before and out of this function) will get
the Result from the queue and write it to disk, so this doesn’t block
the measurement threads.

If there was an exception not caught by measure_relay, it will call
instead result_putter_error, which logs the error and complete
immediately.

Before the outer loop iterates, it waits (non blocking) that all
the Results are ready calling wait_for_results.
This avoid to start measuring the same relay which might still being
measured.

	
sbws.core.scanner.measure_bandwidth_to_server(session, conf, dest, content_length)

	
	Returns tuple

	results or None if the if the measurement fail.
None or exception if the measurement fail.

	
sbws.core.scanner.measure_relay(args, conf, destinations, cb, rl, relay)

	Select a Web server, a relay to build the circuit,
build the circuit and measure the bandwidth of the given relay.

	Return Result

	a measurement Result object

	
sbws.core.scanner.measure_rtt_to_server(session, conf, dest, content_length)

	Make multiple end-to-end RTT measurements by making small HTTP requests
over a circuit + stream that should already exist, persist, and not need
rebuilding. If something goes wrong and not all of the RTT measurements can
be made, return None. Otherwise return a list of the RTTs (in seconds).

	Returns tuple

	results or None if the if the measurement fail.
None or exception if the measurement fail.

	
sbws.core.scanner.result_putter(result_dump)

	Create a function that takes a single argument – the measurement
result – and return that function so it can be used by someone else

	
sbws.core.scanner.result_putter_error(target)

	Create a function that takes a single argument – an error from a
measurement – and return that function so it can be used by someone else

	
sbws.core.scanner.run_speedtest(args, conf)

	Initializes all the data and threads needed to measure the relays.

It launches or connect to Tor in a thread.
It initializes the list of relays seen in the Tor network.
It starts a thread to read the previous measurements and wait for new
measurements to write them to the disk.
It initializes a class that will be used to order the relays depending
on their measurements age.
It initializes the list of destinations that will be used for the
measurements.
It initializes the thread pool that will launch the measurement threads.
The pool starts 3 other threads that are not the measurement (worker)
threads.
Finally, it calls the function that will manage the measurement threads.

	
sbws.core.scanner.stop_threads(signal, frame, exit_code=0)

	

	
sbws.core.scanner.timed_recv_from_server(session, dest, byte_range)

	Request the byte_range from the URL at dest. If successful,
return True and the time it took to download. Otherwise return False and an
exception.

	
sbws.core.scanner.wait_for_results(num_relays_to_measure, pending_results)

	Wait for the pool to finish and log progress.

While there are relays being measured, just log the progress
and sleep TIMEOUT_MEASUREMENTS (3mins),
which is approximately the time it can take to measure a relay in
the worst case.

When there has not been any relay measured in TIMEOUT_MEASUREMENTS
and there are still relays pending to be measured, it means there is no
progress and call force_get_results().

This can happen in the case of a bug that makes either
measure_relay(),
result_putter() (callback) and/or
result_putter_error() (callback error) stall.

Note

in a future refactor, this could be simpler by:

	Initializing the pool at the begingging of each loop

	Callling close(); join() after
apply_async(),
to ensure no new jobs are added until the pool has finished with all
the ones in the queue.

As currently, there would be still two cases when the pool could stall:

	There’s an exception in measure_relay and another in
callback_err

	There’s an exception callback.

This could also be simpler by not having callback and callback error in
apply_async and instead just calling callback with the
pending_results.

(callback could be also simpler by not having a thread and queue and
just storing to disk, since the time to write to disk is way smaller
than the time to request over the network.)

sbws.core.stats module

	
sbws.core.stats.gen_parser(sub)

	Helper function for the broader argument parser generating code that adds
in all the possible command line arguments for the stats command.

	Parameters

	sub (argparse._SubParsersAction) – what to add a sub-parser to

	
sbws.core.stats.main(args, conf)

	Main entry point into the stats command.

	Parameters

	
	args (argparse.Namespace) – command line arguments

	conf (configparser.ConfigParser) – parsed config files

	
sbws.core.stats.print_stats(args, data)

	Called from main to print various statistics about the organized data
to stdout.

	Parameters

	
	args (argparse.Namespace) – command line arguments

	data (dict) – keyed by relay fingerprint, and with values of
sbws.lib.resultdump.Result subclasses

Module contents

sbws.lib package

Submodules

sbws.lib.circuitbuilder module

	
class sbws.lib.circuitbuilder.CircuitBuilder(args, conf, controller, relay_list=None, close_circuits_on_exit=True)

	Bases: object

The CircuitBuilder interface.

Subclasses must implement their own build_circuit() function.
Subclasses may keep additional state if they’d find it helpful.

The primary way to use a CircuitBuilder of any type is to simply create it
and then call cb.build_circuit(…) with any options that your
CircuitBuilder type needs.

It might be good practice to close circuits as you find you no longer need
them, but CircuitBuilder will keep track of existing circuits and close
them when it is deleted.

	
close_circuit(circ_id)

	

	
class sbws.lib.circuitbuilder.GapsCircuitBuilder(*a, **kw)

	Bases: sbws.lib.circuitbuilder.CircuitBuilder

Same as CircuitBuilder but implements build_circuit.

	
build_circuit(path)

	Return parent class build circuit method.

Since sbws is only building 2 hop paths, there is no need to add random
relays to the path, or convert back and forth between fingerprint and
Relay objects.

	
sbws.lib.circuitbuilder.valid_circuit_length(path)

	

sbws.lib.relaylist module

	
class sbws.lib.relaylist.Relay(fp, cont, ns=None, desc=None, timestamp=None)

	Bases: object

	
property address

	

	
property average_bandwidth

	

	
property burst_bandwidth

	

	
can_exit_to_port(port, strict=False)

	Returns True if the relay has an exit policy and the policy accepts
exiting to the given port or False otherwise.

If strict is true, it only returns the exits that can exit to all
IPs and that port.

The exits that are IPv6 only or IPv4 but rejecting some public networks
will return false.
On July 2020, there were 67 out of 1095 exits like this.

If strict is false, it returns any exit that can exit to some
public IPs and that port.

Note that the EXIT flag exists when the relay can exit to 443 and
80. Currently all Web servers are using 443, so it would not be needed
to check the EXIT flag too, using this function.

	
property consensus_bandwidth

	Return the consensus bandwidth in Bytes.

Consensus bandwidth is the only bandwidth value that is in kilobytes.

	
property consensus_bandwidth_is_unmeasured

	

	
property consensus_valid_after

	Obtain the consensus Valid-After from the document of this relay
network status.

	
property exit_policy

	

	
property fingerprint

	

	
property flags

	

	
increment_relay_recent_measurement_attempt()

	Increment The number of times that a relay has been queued
to be measured.

It is call from main_loop().

	
increment_relay_recent_priority_list()

	The number of times that a relay is “prioritized” to be measured.

It is call from
best_priority().

	
is_exit_not_bad_allowing_port(port, strict=False)

	

	
property last_consensus_timestamp

	

	
property master_key_ed25519

	Obtain ed25519 master key of the relay in server descriptors.

	Returns

	str, the ed25519 master key base 64 encoded without
trailing ‘=’s.

	
property nickname

	

	
property observed_bandwidth

	

	
property relay_in_recent_consensus_count

	Number of times the relay was in a conensus.

	
property relay_recent_measurement_attempt_count

	

	
property relay_recent_priority_list_count

	

	
update_relay_in_recent_consensus(timestamp=None)

	

	
update_router_status(router_status)

	Update this relay router status (from the consensus).

	
update_server_descriptor(server_descriptor)

	Update this relay server descriptor (from the consensus.

	
class sbws.lib.relaylist.RelayList(args, conf, controller, measurements_period=432000, state=None)

	Bases: object

Keeps a list of all relays in the current Tor network and updates it
transparently in the background. Provides useful interfaces for getting
only relays of a certain type.

	
property authorities

	

	
property bad_exits

	

	
exit_min_bw()

	

	
property exits

	

	
exits_not_bad_allowing_port(port, strict=False)

	

	
property fast

	

	
property guards

	

	
increment_recent_measurement_attempt()

	Increment the number of times that any relay has been queued to be
measured.

It is call from main_loop().

It is read and stored in a state file.

	
property last_consensus_timestamp

	Returns the datetime when the last consensus was obtained.

	
non_exit_min_bw()

	

	
property non_exits

	

	
random_relay()

	

	
property recent_consensus_count

	Number of times a new consensus was obtained.

	
property recent_measurement_attempt_count

	

	
property relays

	

	
property relays_fingerprints

	

	
sbws.lib.relaylist.valid_after_from_network_statuses(network_statuses)

	Obtain the consensus Valid-After datetime from the document
attribute of a stem.descriptor.RouterStatusEntryV3.

	Parameters

	network_statuses (list) –

returns datetime:

sbws.lib.relayprioritizer module

	
class sbws.lib.relayprioritizer.RelayPrioritizer(args, conf, relay_list, result_dump)

	Bases: object

	
best_priority(prioritize_result_error=False, return_fraction=True)

	Yields a new ordered list of relays to be measured next.

The relays that were measured farther away in the past,
get prioritized (lowest priority number, first in the list).
The relays that were measured more recently get lower priority (last in
the list, higher priority number).

Optionally, the relays which measurements failed can be prioritized
(first in the list).
However, unstable relays that fail often to be measured, might fail
again and stable relays will get measured only when their measurements
become old enough.
The opposite might be more suitable: give lower priority to the relays
that are unstable, to don’t spend time measuring relays that might fail
to be measured.

Optionally, return only a fraction of all the relays in the network.
Since there could be new relays in the network while measuring the
list of relays returned by this method, this method is run again
before all the relays in the network are measured.

Note

In a future refactor, instead of having a static fraction of relays
to be measured, this method could be call when it’s known that
there’re X number of new relays in the network.

Since measurements made before than X days ago (too old) are not
considered, and the initial list of past measurements is only filtered
when the scanner starts, it’s needed to filter here again to discard
those measurements.

	Parameters

	
	prioritize_result_error (bool) – whether prioritize or not
measurements that did not succeed.

	return_fraction (bool) – whether to return only a fraction of the
relays seen in the network or return all.

return: a generator of the new ordered list of relays to measure next.

	
increment_recent_priority_list()

	Increment the number of times that
best_priority()
has been run.

	
increment_recent_priority_relay(relays_count)

	Increment the number of relays that have been “prioritized” to be
measured in a
best_priority().

	
property recent_priority_list_count

	

	
property recent_priority_relay_count

	

sbws.lib.resultdump module

	
class sbws.lib.resultdump.Result(relay, circ, dest_url, scanner_nick, t=None)

	Bases: object

A bandwidth measurement for a relay.

It re-implements Relay as a inner class.

	
class Relay(fingerprint, nickname, address, master_key_ed25519, average_bandwidth=None, burst_bandwidth=None, observed_bandwidth=None, consensus_bandwidth=None, consensus_bandwidth_is_unmeasured=None, relay_in_recent_consensus=None, relay_recent_measurement_attempt=None, relay_recent_priority_list=None)

	Bases: object

A Tor relay.

It re-implements Relay
with the attributes needed.

Note

in a future refactor it would be simpler if a Relay has
measurements and a measurement has a relay,
instead of every measurement re-implementing Relay.

	
property address

	

	
property circ

	

	
property consensus_bandwidth

	

	
property consensus_bandwidth_is_unmeasured

	

	
property dest_url

	

	
property fingerprint

	

	
static from_dict(d)

	Returns a Result subclass from a
dictionary.

Returns None if the version attribute is not
RESULT_VERSION

It raises NotImplementedError when the dictionary type can not
be parsed.

Note

in a future refactor, the conversions to/from
object-dictionary will be simpler using setattr and __dict__

version is not being used and should be removed.

	
property master_key_ed25519

	

	
property nickname

	

	
property relay_average_bandwidth

	

	
property relay_burst_bandwidth

	

	
property relay_in_recent_consensus

	Number of times the relay was in a consensus.

	
property relay_observed_bandwidth

	

	
property relay_recent_measurement_attempt

	Returns the relay recent measurements attempts.

It is initialized in Relay and
incremented in main_loop().

	
property relay_recent_priority_list

	Returns the relay recent “prioritization”s to be measured.

It is initialized in Relay and
incremented in main_loop().

	
property scanner

	

	
property time

	

	
to_dict()

	

	
property type

	

	
property version

	

	
class sbws.lib.resultdump.ResultDump(args, conf)

	Bases: object

Runs the enter() method in a new thread and collects new Results on its
queue. Writes them to daily result files in the data directory

	
enter()

	Main loop for the ResultDump thread.

When there are results in the queue, queue.get will get them until
there are not anymore or timeout happen.

For every result it gets, it process it and store in the filesystem,
which takes ~1 millisecond and will not trigger the timeout.
It can then store in the filesystem ~1000 results per second.

I does not accept any other data type than Results or list of Results,
therefore is not possible to put big data types in the queue.

If there are not any results in the queue, it waits 1 second and checks
again.

	
handle_result(result)

	Call from ResultDump thread. If we are shutting down, ignores
ResultError* types

	
results_for_relay(relay)

	

	
store_result(result)

	Call from ResultDump thread

	
class sbws.lib.resultdump.ResultError(*a, msg=None, **kw)

	Bases: sbws.lib.resultdump.Result

	
property freshness_reduction_factor

	When the RelayPrioritizer encounters this Result, how much should it
adjust its freshness? (See RelayPrioritizer.best_priority() for more
information about “freshness”)

A higher factor makes the freshness lower (making the Result seem
older). A lower freshness leads to the relay having better priority,
and better priority means it will be measured again sooner.

The value 0.5 was chosen somewhat arbitrarily, but a few weeks of live
network testing verifies that sbws is still able to perform useful
measurements in a reasonable amount of time.

	
static from_dict(d)

	Returns a Result subclass from a
dictionary.

Returns None if the version attribute is not
RESULT_VERSION

It raises NotImplementedError when the dictionary type can not
be parsed.

Note

in a future refactor, the conversions to/from
object-dictionary will be simpler using setattr and __dict__

version is not being used and should be removed.

	
property msg

	

	
to_dict()

	

	
property type

	

	
class sbws.lib.resultdump.ResultErrorAuth(*a, **kw)

	Bases: sbws.lib.resultdump.ResultError

	
property freshness_reduction_factor

	Override the default ResultError.freshness_reduction_factor because a
ResultErrorAuth is most likely not the measured relay’s fault, so we
shouldn’t hurt its priority as much. A higher reduction factor means a
Result’s effective freshness is reduced more, which makes the relay’s
priority better.

The value 0.9 was chosen somewhat arbitrarily.

	
static from_dict(d)

	Returns a Result subclass from a
dictionary.

Returns None if the version attribute is not
RESULT_VERSION

It raises NotImplementedError when the dictionary type can not
be parsed.

Note

in a future refactor, the conversions to/from
object-dictionary will be simpler using setattr and __dict__

version is not being used and should be removed.

	
to_dict()

	

	
property type

	

	
class sbws.lib.resultdump.ResultErrorCircuit(*a, **kw)

	Bases: sbws.lib.resultdump.ResultError

	
property freshness_reduction_factor

	There are a few instances when it isn’t the relay’s fault that the
circuit failed to get built. Maybe someday we’ll try detecting whose
fault it most likely was and subclassing ResultErrorCircuit. But for
now we don’t. So reduce the freshness slightly more than ResultError
does by default so priority isn’t hurt quite as much.

A (hopefully very very rare) example of when a circuit would fail to
get built is when the sbws client machine suddenly loses Internet
access.

	
static from_dict(d)

	Returns a Result subclass from a
dictionary.

Returns None if the version attribute is not
RESULT_VERSION

It raises NotImplementedError when the dictionary type can not
be parsed.

Note

in a future refactor, the conversions to/from
object-dictionary will be simpler using setattr and __dict__

version is not being used and should be removed.

	
to_dict()

	

	
property type

	

	
class sbws.lib.resultdump.ResultErrorDestination(*a, **kw)

	Bases: sbws.lib.resultdump.ResultError

Error when there is not a working destination Web Server.

It is instantiated in measure_relay().

Note

this duplicates code and add more tech-debt,
since it’s the same as the other
ResultError classes except for the
type.
In a future refactor, there should be only one ResultError class
and assign the type in the scanner module.

	
static from_dict(d)

	Returns a Result subclass from a
dictionary.

Returns None if the version attribute is not
RESULT_VERSION

It raises NotImplementedError when the dictionary type can not
be parsed.

Note

in a future refactor, the conversions to/from
object-dictionary will be simpler using setattr and __dict__

version is not being used and should be removed.

	
to_dict()

	

	
property type

	

	
class sbws.lib.resultdump.ResultErrorSecondRelay(*a, **kw)

	Bases: sbws.lib.resultdump.ResultError

Error when it could not be found a second relay suitable to measure
a relay.

A second suitable relay is a relay that:
- Has at least equal bandwidth as the relay to measure.
- If the relay to measure is not an exit, the second relay is an exit without bad flag and can exit to port 443.
- If the relay to measure is an exit, the second relay is not an exit.

It is instantiated in measure_relay().

Note

this duplicates code and add more tech-debt,
since it’s the same as the other
ResultError classes except for the
type.
In a future refactor, there should be only one ResultError class
and assign the type in the scanner module.

	
static from_dict(d)

	Returns a Result subclass from a
dictionary.

Returns None if the version attribute is not
RESULT_VERSION

It raises NotImplementedError when the dictionary type can not
be parsed.

Note

in a future refactor, the conversions to/from
object-dictionary will be simpler using setattr and __dict__

version is not being used and should be removed.

	
to_dict()

	

	
property type

	

	
class sbws.lib.resultdump.ResultErrorStream(*a, **kw)

	Bases: sbws.lib.resultdump.ResultError

	
static from_dict(d)

	Returns a Result subclass from a
dictionary.

Returns None if the version attribute is not
RESULT_VERSION

It raises NotImplementedError when the dictionary type can not
be parsed.

Note

in a future refactor, the conversions to/from
object-dictionary will be simpler using setattr and __dict__

version is not being used and should be removed.

	
to_dict()

	

	
property type

	

	
class sbws.lib.resultdump.ResultSuccess(rtts, downloads, *a, **kw)

	Bases: sbws.lib.resultdump.Result

	
property downloads

	

	
static from_dict(d)

	Returns a Result subclass from a
dictionary.

Returns None if the version attribute is not
RESULT_VERSION

It raises NotImplementedError when the dictionary type can not
be parsed.

Note

in a future refactor, the conversions to/from
object-dictionary will be simpler using setattr and __dict__

version is not being used and should be removed.

	
property rtts

	

	
to_dict()

	

	
property type

	

	
sbws.lib.resultdump.load_recent_results_in_datadir(fresh_days, datadir, success_only=False, on_changed_ipv4=False, on_changed_ipv6=False)

	Given a data directory, read all results files in it that could have
results in them that are still valid. Trim them, and return the valid
Results as a list

	
sbws.lib.resultdump.load_result_file(fname, success_only=False)

	Reads in all lines from the given file, and parses them into Result
structures (or subclasses of Result). Optionally only keeps ResultSuccess.
Returns all kept Results as a result dictionary. This function does not
care about the age of the results

	
sbws.lib.resultdump.merge_result_dicts(d1, d2)

	Given two dictionaries that contain Result data, merge them. Result
dictionaries have keys of relay fingerprints and values of lists of results
for those relays.

	
sbws.lib.resultdump.trim_results(fresh_days, result_dict)

	Given a result dictionary, remove all Results that are no longer valid
and return the new dictionary

	
sbws.lib.resultdump.trim_results_ip_changed(result_dict, on_changed_ipv4=False, on_changed_ipv6=False)

	When there are results for the same relay with different IPs,
create a new results’ dictionary without that relay’s results using an
older IP.

	Parameters

	
	result_dict (dict) – a dictionary of results

	on_changed_ipv4 (bool) – whether to trim the results when a relay’s
IPv4 changes

	on_changed_ipv6 (bool) – whether to trim the results when a relay’s
IPv6 changes

	Returns

	a new results dictionary

	
sbws.lib.resultdump.write_result_to_datadir(result, datadir)

	Can be called from any thread

sbws.lib.v3bwfile module

Classes and functions that create the bandwidth measurements document
(v3bw) used by bandwidth authorities.

	
class sbws.lib.v3bwfile.V3BWFile(v3bwheader, v3bwlines)

	Bases: object

Create a Bandwidth List file following spec version 1.X.X

	Parameters

	
	v3bwheader (V3BWHeader) – header

	v3bwlines (list) – V3BWLines

	
static bw_kb(bw_lines, reverse=False)

	

	
bw_line_for_node_id(node_id)

	Returns the bandwidth line for a given node fingerprint.

Used to combine data when plotting.

	
static bw_sbws_scale(bw_lines, scale_constant=7500, reverse=False)

	Return a new V3BwLine list scaled using sbws method.

	Parameters

	
	bw_lines (list) – bw lines to scale, not self.bw_lines,
since this method will be before self.bw_lines have been
initialized.

	scale_constant (int) – the constant to multiply by the ratio and
the bandwidth to obtain the new bandwidth

	Returns list

	V3BwLine list

	
static bw_torflow_scale(bw_lines, desc_bw_obs_type=1, cap=0.05, num_round_dig=2, reverse=False, router_statuses_d=None)

	Obtain final bandwidth measurements applying Torflow’s scaling
method.

See details in Torflow aggregation and scaling.

	
classmethod from_results(results, scanner_country=None, destinations_countries=None, state_fpath='', scale_constant=7500, scaling_method=1, torflow_obs=0, torflow_cap=0.05, round_digs=2, secs_recent=None, secs_away=None, min_num=0, consensus_path=None, max_bw_diff_perc=50, reverse=False)

	Create V3BWFile class from sbws Results.

	Parameters

	
	results (dict) – see below

	state_fpath (str) – path to the state file

	scaling_method (int) – Scaling method to obtain the bandwidth
Possible values: {None, SBWS_SCALING, TORFLOW_SCALING} = {0, 1, 2}

	scale_constant (int) – sbws scaling constant

	torflow_obs (int) – method to choose descriptor observed bandwidth

	reverse (bool) – whether to sort the bw lines descending or not

Results are in the form:

{'relay_fp1': [Result1, Result2, ...],
 'relay_fp2': [Result1, Result2, ...]}

	
classmethod from_v100_fpath(fpath)

	

	
classmethod from_v1_fpath(fpath)

	

	
property info_stats

	

	
static is_max_bw_diff_perc_reached(bw_lines, max_bw_diff_perc=50, router_statuses_d=None)

	

	
property is_min_perc

	

	
property max_bw

	

	
property mean_bw

	

	
static measured_progress_stats(num_bw_lines, number_consensus_relays, min_perc_reached_before)

	Statistics about measurements progress,
to be included in the header.

	Parameters

	
	bw_lines (list) – the bw_lines after scaling and applying filters.

	consensus_path (str) – the path to the cached consensus file.

	state_fpath (str) – the path to the state file

	Returns dict, bool

	Statistics about the progress made with
measurements and whether the percentage of measured relays has been
reached.

	
property median_bw

	

	
property min_bw

	

	
property num

	

	
static read_number_consensus_relays(consensus_path)

	Read the number of relays in the Network from the cached consensus
file.

	
static read_router_statuses(consensus_path)

	Read the router statuses from the cached consensus file.

	
static set_under_min_report(bw_lines)

	Mondify the Bandwidth Lines adding the KeyValue under_min_report,
vote.

	
property sum_bw

	

	
to_plt(attrs=['bw'], sorted_by=None)

	Return bandwidth data in a format useful for matplotlib.

Used from external tool to plot.

	
update_progress(num_bw_lines, header, number_consensus_relays, state)

	Returns True if the minimim percent of Bandwidth Lines was reached
and False otherwise.
Update the header with the progress.

	
static warn_if_not_accurate_enough(bw_lines, scale_constant=7500)

	

	
write(output)

	

	
class sbws.lib.v3bwfile.V3BWHeader(timestamp, **kwargs)

	Bases: object

Create a bandwidth measurements (V3bw) header
following bandwidth measurements document spec version 1.X.X.

	Parameters

	
	timestamp (str) – timestamp in Unix Epoch seconds of the most recent
generator result.

	version (str) – the spec version

	software (str) – the name of the software that generates this

	software_version (str) – the version of the software

	kwargs (dict) – extra headers. Currently supported:

	earliest_bandwidth: str, ISO 8601 timestamp in UTC time zone
when the first bandwidth was obtained

	generator_started: str, ISO 8601 timestamp in UTC time zone
when the generator started

	
add_relays_excluded_counters(exclusion_dict)

	Add the monitoring KeyValues to the header about the number of
relays not included because they were not eligible.

	
add_stats(**kwargs)

	

	
add_time_report_half_network()

	Add to the header the time it took to measure half of the network.

It is not the time the scanner actually takes on measuring all the
network, but the number_eligible_relays that are reported in the
bandwidth file and directory authorities will vote on.

This is calculated for half of the network, so that failed or not
reported relays do not affect too much.

For instance, if there are 6500 relays in the network, half of the
network would be 3250. And if there were 4000 eligible relays
measured in an interval of 3 days, the time to measure half of the
network would be 3 days * 3250 / 4000.

Since the elapsed time is calculated from the earliest and the
latest measurement and a relay might have more than 2 measurements,
this would give an estimate on how long it would take to measure
the network including all the valid measurements.

Log also an estimated on how long it would take with the current
number of relays included in the bandwidth file.

	
static consensus_count_from_file(state_fpath)

	

	
static earliest_bandwidth_from_results(results)

	

	
classmethod from_lines_v1(lines)

	
	Parameters

	lines (list) – list of lines to parse

	Returns

	tuple of V3BWHeader object and non-header lines

	
classmethod from_lines_v100(lines)

	
	Parameters

	lines (list) – list of lines to parse

	Returns

	tuple of V3BWHeader object and non-header lines

	
classmethod from_results(results, scanner_country=None, destinations_countries=None, state_fpath='')

	

	
classmethod from_text_v1(text)

	
	Parameters

	text (str) – text to parse

	Returns

	tuple of V3BWHeader object and non-header lines

	
static generator_started_from_file(state_fpath)

	ISO formatted timestamp for the time when the scanner process most
recently started.

	
property keyvalue_tuple_ls

	Return list of all KeyValue tuples

	
property keyvalue_unordered_tuple_ls

	Return list of KeyValue tuples that do not have specific order.

	
property keyvalue_v1str_ls

	Return KeyValue list of strings following spec v1.X.X.

	
property keyvalue_v2_ls

	Return KeyValue list of strings following spec v2.X.X.

	
static latest_bandwidth_from_results(results)

	

	
property num_lines

	

	
static recent_measurement_attempt_count_from_file(state_fpath)

	Returns the number of times any relay was queued to be measured
in the recent (by default 5) days from the state file.

	
static recent_priority_list_count_from_file(state_fpath)

	Returns the number of times
best_priority()
was run
in the recent (by default 5) days from the state file.

	
static recent_priority_relay_count_from_file(state_fpath)

	Returns the number of times any relay was “prioritized” to be measured
in the recent (by default 5) days from the state file.

	
property strv1

	Return header string following spec v1.X.X.

	
property strv2

	Return header string following spec v2.X.X.

	
class sbws.lib.v3bwfile.V3BWLine(node_id, bw, **kwargs)

	Bases: object

Create a Bandwidth List line following the spec version 1.X.X.

	Parameters

	
	node_id (str) – the relay fingerprint

	bw (int) – the bandwidth value that directory authorities will include
in their votes.

	kwargs (dict) – extra headers.

Note

tech-debt: move node_id and bw to kwargs and just ensure that
the required values are in **kwargs

	
property bw_keyvalue_tuple_ls

	Return list of KeyValue Bandwidth Line tuples.

	
property bw_keyvalue_v1str_ls

	Return list of KeyValue Bandwidth Line strings following
spec v1.X.X.

	
static bw_mean_from_results(results)

	

	
static bw_median_from_results(results)

	

	
property bw_strv1

	Return Bandwidth Line string following spec v1.X.X.

	
static consensus_bandwidth_from_results(results)

	Obtain the last consensus bandwidth from the results.

	
static consensus_bandwidth_is_unmeasured_from_results(results)

	Obtain the last consensus unmeasured flag from the results.

	
static desc_bw_avg_from_results(results)

	Obtain the last descriptor bandwidth average from the results.

	
static desc_bw_bur_from_results(results)

	Obtain the last descriptor bandwidth burst from the results.

	
static desc_bw_obs_last_from_results(results)

	

	
static desc_bw_obs_mean_from_results(results)

	

	
classmethod from_bw_line_v1(line)

	

	
classmethod from_data(data, fingerprint)

	

	
classmethod from_results(results, secs_recent=None, secs_away=None, min_num=0, router_statuses_d=None)

	Convert sbws results to relays’ Bandwidth Lines

bs stands for Bytes/seconds
bw_mean means the bw is obtained from the mean of the all the
downloads’ bandwidth.
Downloads’ bandwidth are calculated as the amount of data received
divided by the the time it took to received.
bw = data (Bytes) / time (seconds)

	
static last_time_from_results(results)

	

	
static result_types_from_results(results)

	

	
static results_away_each_other(results, secs_away=None)

	

	
static results_recent_than(results, secs_recent=None)

	

	
static rtt_from_results(results)

	

	
sbws.lib.v3bwfile.kb_round_x_sig_dig(bw_bs, digits=2)

	Convert bw_bs from bytes to kilobytes, and round the result to
‘digits’ significant digits.
Results less than or equal to 1 are rounded up to 1.
Returns an integer.

digits must be greater than 0.
n must be less than or equal to 2**82, to avoid floating point errors.

	
sbws.lib.v3bwfile.num_results_of_type(results, type_str)

	

	
sbws.lib.v3bwfile.result_type_to_key(type_str)

	

	
sbws.lib.v3bwfile.round_sig_dig(n, digits=2)

	Round n to ‘digits’ significant digits in front of the decimal point.
Results less than or equal to 1 are rounded to 1.
Returns an integer.

digits must be greater than 0.
n must be less than or equal to 2**73, to avoid floating point errors.

Module contents

sbws.util package

Submodules

sbws.util.config module

Util functions to manage sbws configuration files.

	
sbws.util.config.configure_logging(args, conf)

	

	
sbws.util.config.get_config(args)

	Get ConfigParser interpolating all configuration files.

	
sbws.util.config.validate_config(conf)

	Checks the given conf for bad values or bad combinations of values. If
there’s something wrong, returns False and a list of error messages.
Otherwise, return True and an empty list

sbws.util.filelock module

	
class sbws.util.filelock.DirectoryLock(dname)

	Bases: sbws.util.filelock._FLock

Holds a lock on a file in dname so that other sbws processes/threads
won’t try to read/write while we are reading/writing in this directory.

>>> with DirectoryLock(dname):
>>> # do some reading/writing in dname
>>> # no longer have the lock

Note: The directory must already exist.

	Parameters

	dname (str) – Name of directory for which we want to obtain a lock

	
class sbws.util.filelock.FileLock(fname)

	Bases: sbws.util.filelock._FLock

Holds a lock on fname so that other sbws processes/threads
won’t try to read/write while we are reading/writing this file.

>>> with FileLock(fname):
>>> # do some reading/writing of fname
>>> # no longer have the lock

	Parameters

	fname (str) – Name of the file for which we want to obtain a lock

sbws.util.parser module

	
sbws.util.parser.create_parser()

	

sbws.util.state module

	
class sbws.util.state.State(fname)

	Bases: object

json wrapper to read a json file every time it gets a key and to write
to the file every time a key is set.

Every time a key is got or set, the file is locked, to atomically access
and update the file across threads and across processes.

>>> state = State('foo.state')
>>> # state == {}

>>> state['linux'] = True
>>> # 'foo.state' now exists on disk with the JSON for {'linux': True}

>>> # We read 'foo.state' from disk in order to get the most up-to-date
>>> # state info. Pretend another process has updated 'linux' to be
>>> # False
>>> state['linux']
>>> # returns False

>>> # Pretend another process has added the user's age to the state file.
>>> # As before, we read the state file from disk for the most
>>> # up-to-date info.
>>> state['age']
>>> # Returns 14

>>> # We now set their name. We read the state file first, set the option,
>>> # and then write it out.
>>> state['name'] = 'John'

>>> # We can do many of the same things with a State object as with a dict
>>> for key in state: print(key)
>>> # Prints 'linux', 'age', and 'name'

	
count(k)

	Returns the length if the key value is a list
or the sum of number if the key value is a list of list
or the key value
or None if the state doesn’t have the key.

	
get(key, d=None)

	Implements a dictionary get method reading and locking
a json file.

sbws.util.stem module

	
sbws.util.stem.add_event_listener(controller, func, event)

	

	
sbws.util.stem.attach_stream_to_circuit_listener(controller, circ_id)

	Returns a function that should be given to add_event_listener(). It
looks for newly created streams and attaches them to the given circ_id

	
sbws.util.stem.circuit_str(controller, circ_id)

	

	
sbws.util.stem.get_socks_info(controller)

	Returns the first SocksPort Tor is configured to listen on, in the form
of an (address, port) tuple

	
sbws.util.stem.init_controller(conf)

	

	
sbws.util.stem.is_bootstrapped(c)

	

	
sbws.util.stem.is_torrc_starting_point_set(tor_controller)

	Verify that the tor controller has the correct configuration.

When connecting to a tor controller that has not been launched by sbws,
it should have been configured to work with sbws.

	
sbws.util.stem.launch_or_connect_to_tor(conf)

	

	
sbws.util.stem.launch_tor(conf)

	

	
sbws.util.stem.only_relays_with_bandwidth(controller, relays, min_bw=None, max_bw=None)

	Given a list of relays, only return those that optionally have above
min_bw and optionally have below max_bw, inclusively. If neither
min_bw nor max_bw are given, essentially just returns the input list of
relays.

	
sbws.util.stem.parse_user_torrc_config(torrc, torrc_text)

	Parse the user configuration torrc text call extra_lines
to a dictionary suitable to use with stem and return a new torrc
dictionary that merges that dictionary with the existing torrc.
Example:

[tor]
extra_lines =
 Log debug file /tmp/tor-debug.log
 NumCPUs 1

	
sbws.util.stem.remove_event_listener(controller, func)

	

	
sbws.util.stem.set_torrc_options_can_fail(controller)

	Set options that can fail, at runtime.

They can be set at launch, but since the may fail because they are not
supported in some Tor versions, it’s easier to try one by one at runtime
and ignore the ones that fail.

	
sbws.util.stem.set_torrc_runtime_options(controller)

	Set torrc options at runtime.

	
sbws.util.stem.set_torrc_starting_point(controller)

	Set the torrc starting point options.

sbws.util.userquery module

	
sbws.util.userquery.query_yes_no(question, default='yes')

	Ask a yes/no question via input() and return the user’s answer.

	Parameters

	
	question (str) – Prompt given to the user.

	default (str) – The assumed answer if th user just hits Enter. It
must be 'yes' (the default if no default is given), 'no', or
None (meaning an answer is required from the user).

	Returns

	True if we ended up with a ‘yes’ answer, otherwise
False.

Module contents

Implementation decissions

Dependencies

When a needed feature is already implemented in some other software, there’re
usually some things to consider whether to use that software as dependency or
re-implement the feature:

Possible advantages using other software:

	zero maintenance

	not reinventing the wheel

Possible disadvantages using other software:

	maybe too big

	maybe introduce security issues

	maybe is not maintaned

sbws version

Because some bwauths install sbws from the git repository, it is useful to
know from which git revision they install it from.
We’d prefer to do not see the git revision when it is installed from a git
tag or Debian package (which is usually built from a git tag or git archive
release).

A first solution would be to obtain the git revision at runtime, but:

	sbws is not usually running from the same directory as the git repository,
as the installation might install it in other directory.

	if some other git repository is the current path, sbws might be obtaining
the git revision of that other repository.

So next solution was to obtain the git revision at build/install time.
To achieve this, an script should be called from the installer or at runtime
whenever __version__ needs to be read.

While it could be implemented by us, there’re two external tools that achieve
this.

setuptools_scm

https://github.com/pypa/setuptools_scm/

Advantages:

	does what we want, for 19 commits after 1.1.0 tag it’d add an string like
‘1.1.1.dev19+g76ef2fe0.d20200221.
We don’t need the date, but it can probably be removed and it does not hurt.

	we don’t need to maintain it.

Disadvantages:

	it adds the extra dependency setuptools_scm.

	it does not obtain the version from a git archive, though there’s other tool
that does that.

	the version reported comes only from build time, so if we make a commit
without running setup.py, sbws will not report the new version.

versioneer

https://github.com/warner/python-versioneer

Advantages:

	it does not add any extra dependency. The first time, versioneer needs to
be installed. When run, it will generate versioneer.py and _version.py,
which are created from versioneer itself. Then it can be uninstall

	does what we want, for 19 commits after 1.1.0 tag it’d add an string like
1.1.0+19.g76ef2fe0. Note the difference with 1.1.0 from he 1.1.1
generated by

	we don’t need to maintain it.

	it is also capable to obtain the version from a git archive.

	the version reported at build time and runtime is the same.

Disadvantages:

	it adds extra code to sbws and it’s quite a lot

	the generated code is independent from the upstream and loses the tests.

	does not seem maintained.

Conclussion

Because setuptools_scm gives only the version at build time, we decided to
use versioneer.
We might need to change it in the future if starts giving problems with other
git or python versions or we find a way to make setuptools_scm to detect
the same version at buildtime and runtime.

See https://github.com/MartinThoma/MartinThoma.github.io/blob/1235fcdecda4d71b42fc07bfe7db327a27e7bcde/content/2018-11-13-python-package-versions.md
for other comparative versioning python packages.

Changing Bandwidth file monitoring KeyValues

In version 1.1.0 we added KeyValues call recent_X_count and
relay_X_count which implied to modify several parts of the code.

We only stored numbers for simpliciy, but then the value of this numbers
accumulate over the time and there is no way to know to which number decrease
since some of the main objects are not recreated at runtime and do not have
attributes about when they were created or updated.
The relations between the object do no follow usual one-to-many or many-to-many
relationships either, to be able to induce some numbers from the related
objects.

The only way we could think to solve this is to store list of timestamps,
instead of just numbers, as an attribute in the objects that need to store
some counting.

Where the values of the keys come from?

In the file system, there are only two types of files were these values can be
stored:
- the results files in datadir
- the state.dat file

Because of the structure of the content in the results files, they can store
KeyValues for the relays, but not for the headers, which need to be stored in
the state.dat file.

The classes that manage these KeyValues are:

RelayList:

	recent_consensus_count

	recent_measurement_attempt_count

RelayPrioritizer:

	recent_priority_list_count

	recent_priority_relay_count

Relay and Result:

	relay_in_recent_consensus_count

	relay_recent_measurement_attempt_count

	relay_recent_priority_list_count

Transition from numbers to datetimes

The KeyValues named _count in the results and the state will be ignored
when sbws is restarted with this change, since they will be written without
_count names in these files json .

We could add code to count this in the transition to this version, but these
numbers are wrong anyway and we don’t think it’s worth the effort since they
will be correct after 5 days and they have been wrong for long time.

Additionally recent_measurement_failure_count will be negative, since it’s
calculated as recent_measurement_attempt_count minus all the results.
While the total number of results in the last 5 days is correct, the number of
the attempts won’t be until 5 days have pass.

Disadvantages

sbws generate, with 27795 measurement attempts takes 1min instead of a few
seconds.
The same happens with the RelayPrioritizer.best_priority, though so far
that seems ok since it’s a python generator in a thread and the measurements
start before it has calculated all the priorities.
The same happens with the ResultDump that read/write the data in a thread.

Conclussion

All these changes required lot of effort and are not optimal. It was the way
we could correct and maintain 1.1.0 version.
If a 2.0 version happens, we highly recommend re-design the data structures to
use a database using a well maintained ORM library, which will avoid the
limitations of json files, errors in data types conversions and which is
optimized for the type of counting and statistics we aim to.

Note

Documentation about a possible version 2.0 and the steps to change
the code from 1.X needs to be created.

Relays’ bandwidth distribution

sbws raw measurements compared to Torflow measurements

[image: sbws and torflow raw measurements distribution]
[image: sbws and torflow raw measurements distribution 2]

sbws linear scaling

Multiply each relay bandwidth by 7500/median

See bandwidth_file_spec [https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt] appendix B to know how about linear scaling.

Code: sbws.lib.v3bwfile.sbws_scale()

[image: sbws linear scaling]

sbws Torflow scaling

See bandwidth_file_spec [https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt] appendix B to know how about torflow scaling.

Code: sbws.lib.v3bwfile.torflow_scale()

[image: sbws torflow scaling]

How bandwidth files are shown in the Tor network

Directory authorities’ votes

moria, using Tor 0.3.5.7:

bandwidth-file-headers timestamp=1548181637

https://collector.torproject.org/recent/relay-descriptors/votes/

To appear in Tor v0.4.1.x:

bandwidth-file-digest sha256=01234567890123456789abcdefghijkl

https://gitlab.torproject.org/tpo/core/tor/-/issues/26698

Directory authorities’ bandwidth file URL

To appear in Tor v0.4.1.x:

/tor/status-vote/next/bandwidth.z

https://gitlab.torproject.org/tpo/core/tor/-/issues/21377

Bandwidth authorities in metrics

Current bandwidth authorities

[image: bandwidth authorities in metrics]https://metrics.torproject.org/rs.html

(flag:Authority)

Bandwidth Authorities - Measured Relays past 7 days

[image: bandwidth measured in the past 7 days]
https://consensus-health.torproject.org/graphs.html

Bandwidth Authorities - Measured Relays past 90 days

[image: bandwidth measured in the past 90 days]
https://consensus-health.torproject.org/graphs.html

Monitoring bandwidth changes in the Tor Network

Bandwidth authorities timeline

Events that can affect the data generated by the bwauths:

https://gitlab.torproject.org/tpo/network-health/sbws/-/wikis/bandwidth%20authorities%20timeline

This page might be moved to a different location.

Bwauths number of measured relays

It should be approximately equal for all bwauths.

[image: bwauths measured relays]
https://consensus-health.torproject.org/graphs.html#votedaboutgraphs

http://tgnv2pssfumdedyw.onion/graphs.html#votedaboutgraphs

Total consensus weights across bandwidth authorities

It should be approximately equal for all bwauths.

[image: total consensus weight]
​https://metrics.torproject.org/totalcw.html

Not measured relays and descriptors and consensus updates

Run the tool https://gitlab.torproject.org/juga/bwauthealth.

Total bandwidth

Should not decrease.

[image: advertised bandwidth]
​https://metrics.torproject.org/bandwidth-flags.html

Time to download a file

Should not increase.

[image: torperf]
​https://metrics.torproject.org/torperf.html

Roadmap

Release 1.0.0

Autumn 2018
- Minimal Viable Product (MVP)

Release 1.1.0

TBD

Glossary

	directory authority
	a special-purpose relay that maintains a list of currently-running
relays and periodically publishes a consensus together with the other
directory authorities. 1

	bandwidth authority
	A directory authority that runs a scanner and a
generator or obtain bandwidth list file s from a
generator.

	scanner
	Term to refer to the process that measures the relays’ bandwidth.
It is also called generator when it is the same tool that is
used to generate bandwidth list file s.

	generator
	Term to refer to the tool that generates the
bandwidth list file s. Often used as a synonym for
scanner.

	bandwidth list file
	The file generated by generator s that is read by the
directory authority s and included in their votes.
See bandwidth-file-spec.txt [https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt]
to know about the file specification.

	sbws scanner
	The sbws command used to run sbws as a scanner.

	sbws generate
	The sbws command used to run sbws as a generator.

	v3bw file
	The term used by sbws to refer to bandwidth list file
v1.1.0.

Listing 5 A v3bw file

1524159868
version=0.1.0
node_id=$1BA71540E05D18401B65B553C35DA71992B9E488 bw=6941170 nick=exit2 rtt=20 time=1524107856
node_id=$189442066BEF15F777738E4E063B7BE0285EA0D9 bw=6855121 nick=exit3 rtt=19 time=1524107855
node_id=$076697F1272A92110AB82226699E62C4EFD49766 bw=6810514 nick=relay4 rtt=20 time=1524107855
node_id=$57BD9518CCC40874D969F0784922EF8B89EB9707 bw=6693692 nick=relay7 rtt=20 time=1524107837
node_id=$B5B33BCBC8C779BFE7B319E0CC3EA6E52EA355EA bw=6653275 nick=relay3 rtt=38 time=1524107847
node_id=$514326DD0EA15A41F1E7840C421A06CCCB2E39FA bw=6614808 nick=exit1 rtt=20 time=1524107837
node_id=$4E5FBF937A4C1D4F9211780BF700E70E30004910 bw=6593946 nick=relay1 rtt=19 time=1524107855
node_id=$D17B78F14F66F9F29686B37A78B77F6AC17DCE92 bw=6483024 nick=relay6 rtt=24 time=1524107848
node_id=$883505B618A0F14EE6136F1451CD4F00760C105F bw=6257421 nick=relay5 rtt=20 time=1524107865
node_id=$654E99AF0EAFA05DCD576C8607F15F3B076C53C8 bw=6069373 nick=relay2 rtt=19 time=1524107860

	destination
	The term used by sbws to refer to a Web server where the
scanner request files to perform the bandwidth measurements.

	1

	https://metrics.torproject.org/glossary.html

Frequently Asked Questions (FAQ)

See also

Glossary.

How many hops are the circuits used to perform the measurements?

Two hops.

How are relays selected to be measured?

The sbws scanner periodically refreshes its idea for what relays should
be measured next. It prioritizese the measurement of relays that do not have
recent results. In this way, relays that have just joined the network or have
just come back online after a many-day period of being offline will be measured
before relays that have been online constantly.

How do sbws scanner results end up in the consensus?

The sbws scanner runs continuously to gather fresh data.

The sbws generate command takes the fresh data and generates a
v3bw file.

The Tor directory authority parses the v3bw file and includes bandwidth
information in its vote.

The authorities take the low-median of the bandwidths for each relay from all
of the bandwidth authorities and use that in the
consensus.

Does sbws need any open ports?

No.

How much bandwidth will the sbws scanner use?

Todo

answer this

How much bandwidth will the webserver use?

Todo

answer this

Should I run my own webserver? Use a CDN? Something else?

It’s up to you. Sbws is very flexible.

Todo

better answer.

Switching from helpers to HTTP(S)

	Author

	Matt Traudt

	Date

	25 April 2018

	Last Update

	25 April 2018

	Status

	Draft

Some Problems with the sbws helper concept

	Twice as many things to keep up to date

	Finding helper operators

	Trusting helper operators

	Home-grown protocol (“but it’s totally secure enough for our needs guys,
trust me. And it’s totally implemented correctly too.”)

Ways HTTP(S) is less terrible

	Standard protocols with established security properties

	Easier to “set and forget”

	
	More flexible in deployment set ups
	
	TLS could be optional, but if present, could allow the web server to be
far away from any Tor relay

	CDNs could be used … maybe (no promises)

	Measurements could still be done 1 relay at a time if there’s a way to
specify that the web server should be considered right next to a specific
relay(s)

Challenges

Measuring 2 relays at a time

In the current design, it’s easy to see and believe that sbws only measures one
relay at a time.

In an sbws deployment that uses HTTP(S) servers far away from any Tor relay,
it’s harder or impossible. So we need to measure more than one relay at once.
That means we need to come up with a way to select a pair of relays (where one
is an exit, most likely) such that one won’t significantly impact the results
for the other.

Idea 1:

	Pick a first hop relay.

	Collect all exits that have a consensus weight equal or higher to the first
hop relay. If there are none, collect the single fastest or select the
X fastest.

	Pick one of the collected exits in a weighted random fashion based on their
consensus weights

Idea 2:

Same as the first, but consider all exits not just the ones faster than the
first hop relay.

Supporting many variations on HTTP(S)

By this I mean I would love to support all of the following.

	sbws scanner option for using an HTTPS CDN across all exits in the network

	sbws scanner option for using a specific HTTPS webserver across all exits in
the network (might not be any different than the previous item)

	sbws scanner option for using a specific HTTP(S) webserver across a specific list
of relays (which may or may not have the Exit flag)

	in the cases where TLS is used, optional (enabled by default) verification
the certificate is valid or at least pinned

	in the cases where TLS is used, the optional use of client certificates for
identification

Proposals

Replace the concepts of “helpers” and “helper relays” and “sbws servers” with
“SOMETHING”. “Measurement methods”? “Avenues”? “Destinations”? I’ll call them
destinations for now.

Configuration

Replace [helpers] with [destinations]. If you don’t remember what this
section is for, it’s for enabling/disabling various helpers (or, now
destinations) without removing their config details.

[destinations]
cloudflare_cdn = on
pastly_relay = on
foobar = off

Replace [helpers.foo] with [destinations.foo]. If you don’t remember
what these are for, they are sections for each enabled destination that specify
more specific configuration options for them. In the helper relay world, they
had the relay fingerprint, sbws server host and port, and the password to give
the sbws server.

If there is a combination of options that doesn’t make sense, then sbws should
fail to start.

If no destinations are configured, sbws should fail to start.

Sbws should run reachability tests on each destination on startup and then
periodically and make sure they are usable as configured. It should only use
destinations that are usable. If none are usable, it should sleep for a while
and test for usability again later.

Available keys in a [destinations.foo] section:

	relays: a comma-separated list of relay fingerprints that can be used
when using this destination. If unspecified, use all relays with the Exit
flag. If specified, at least one relay must be usable. If it isn’t, the
destination should be considered unusable. (optional)

	relay_section_method: one of uniform_random or
bw_weighted_random, defaulting to whichever is a sane default (optional)

	url: an HTTP or HTTPS URL for the bandwidth file to download. The URL’s
hostname must not be resolved locally; instead, it should be left up to the
exit relay to resolve. If the URL does not contain a path, it defaults to
/sbws.bin. (required)

	weight: when choosing between which destination to use for the next
measurement, give this destination the specified weight. If not given,
defaults to 100. Note how if no destinations have a weight value, they are
chosen uniformly at random. (optional)

If protocol is https, these additional keys are available in a
[destionations.foo]. It is a fatal configuration error to specify any of
these if protocol is http.

	client_cert: path to certificate to provide to the server. If none
provided, server is only usable if it doesn’t require client authentication.
If provided and file doesn’t exist, it is a fatal configuration error. If
provided and the server doesn’t accept it, the destination is unusable.
(optional)

	verify_server_cert: either a boolean or a path to a file. If yes (the
default), the server’s certificate must be trusted (as determined by the
local machine’s configuration outside of sbws). If no, do no verification of
the certificate at all. If a path to a file and the file does not exist, it
is a fatal configuration error. Otherwise, the certificate the server users
must be present in the file pointed to by this option. (optional)

Example: CDN

Relays are not specified because we want to choose from all exits in the
network.

This CDN provides /sbws.bin so we are allowed to leave off the file part.

HTTPS for the protocol, and no further HTTPS options because this CDN has a
widely-trusted certificate and doesn’t care about only allowing our sbws
scanners to download files.

[destinations.cloudflare]
url = https://sbwsrocks.cdn.cloudflare.com/

Example: Private Local Destination

Here, an authority has decided he doesn’t want to trust anyone but themself.
They are running 2 relays on the same machine as a webserver that only they
will use.

This authority chooses to use a client TLS certificate to identify their
scanner(s), so their webserver must use HTTPS.

On their webserver they generate a self-signed certificate.
On the sbws scanner side, they could choose to assume everything will be okay
and his server will not change certificates. But they’re paranoid, so they get
a copy of the server’s certificate and store it in a local file.

Todo

What file format?

[destionations.secure_bwauth]
relays = AAAA...AAAA, BBBB...BBBB
relay_section_method = uniform_random
url = https://33.33.33.33:4433/sbws.bin
client_cert = ${paths:sbws_home}/secure_bwauth_scanner.cert
verify_server_cert = ${paths:sbws_home}/secure_bwauth_server.cert

Example: “Borrow” bandwidth from unsuspecting mirrors

This could be considered unethical and therefore a terrible non-starter idea.

It’s also a cool thing that I think is technically possible.

Pick a Linux distro that provides ISOs or packages over an HTTP(S) server.
Ideally many servers under a single DNS name that rotates. (Maybe even one that
is geo-aware to give you a close mirror to where you’re resolving the name.)

Then just find a file big enough to service all of our possible request sizes,
and add it to the config.

[destination.unsuspecting_linux]
url = http://examplelinux.net/archive/isos/1.2.3/examplelinux-amd64-gnome-destkop.iso

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sbws	

 	
 	
 sbws.core	

 	
 	
 sbws.core.cleanup	

 	
 	
 sbws.core.generate	

 	
 	
 sbws.core.scanner	

 	
 	
 sbws.core.stats	

 	
 	
 sbws.globals	

 	
 	
 sbws.lib	

 	
 	
 sbws.lib.circuitbuilder	

 	
 	
 sbws.lib.relaylist	

 	
 	
 sbws.lib.relayprioritizer	

 	
 	
 sbws.lib.resultdump	

 	
 	
 sbws.lib.v3bwfile	

 	
 	
 sbws.util	

 	
 	
 sbws.util.config	

 	
 	
 sbws.util.filelock	

 	
 	
 sbws.util.parser	

 	
 	
 sbws.util.state	

 	
 	
 sbws.util.stem	

 	
 	
 sbws.util.userquery	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_event_listener() (in module sbws.util.stem)

 	add_relays_excluded_counters() (sbws.lib.v3bwfile.V3BWHeader method)

 	add_stats() (sbws.lib.v3bwfile.V3BWHeader method)

 	add_time_report_half_network() (sbws.lib.v3bwfile.V3BWHeader method)

 	
 	address() (sbws.lib.relaylist.Relay property)

 	(sbws.lib.resultdump.Result property)

 	attach_stream_to_circuit_listener() (in module sbws.util.stem)

 	authorities() (sbws.lib.relaylist.RelayList property)

 	average_bandwidth() (sbws.lib.relaylist.Relay property)

B

 	
 	bad_exits() (sbws.lib.relaylist.RelayList property)

 	bandwidth authority

 	bandwidth list file

 	best_priority() (sbws.lib.relayprioritizer.RelayPrioritizer method)

 	build_circuit() (sbws.lib.circuitbuilder.GapsCircuitBuilder method)

 	burst_bandwidth() (sbws.lib.relaylist.Relay property)

 	bw_kb() (sbws.lib.v3bwfile.V3BWFile static method)

 	
 	bw_keyvalue_tuple_ls() (sbws.lib.v3bwfile.V3BWLine property)

 	bw_keyvalue_v1str_ls() (sbws.lib.v3bwfile.V3BWLine property)

 	bw_line_for_node_id() (sbws.lib.v3bwfile.V3BWFile method)

 	bw_mean_from_results() (sbws.lib.v3bwfile.V3BWLine static method)

 	bw_median_from_results() (sbws.lib.v3bwfile.V3BWLine static method)

 	bw_sbws_scale() (sbws.lib.v3bwfile.V3BWFile static method)

 	bw_strv1() (sbws.lib.v3bwfile.V3BWLine property)

 	bw_torflow_scale() (sbws.lib.v3bwfile.V3BWFile static method)

C

 	
 	can_exit_to_port() (sbws.lib.relaylist.Relay method)

 	circ() (sbws.lib.resultdump.Result property)

 	circuit_str() (in module sbws.util.stem)

 	CircuitBuilder (class in sbws.lib.circuitbuilder)

 	close_circuit() (sbws.lib.circuitbuilder.CircuitBuilder method)

 	configure_logging() (in module sbws.util.config)

 	consensus_bandwidth() (sbws.lib.relaylist.Relay property)

 	(sbws.lib.resultdump.Result property)

 	
 	consensus_bandwidth_from_results() (sbws.lib.v3bwfile.V3BWLine static method)

 	consensus_bandwidth_is_unmeasured() (sbws.lib.relaylist.Relay property)

 	(sbws.lib.resultdump.Result property)

 	consensus_bandwidth_is_unmeasured_from_results() (sbws.lib.v3bwfile.V3BWLine static method)

 	consensus_count_from_file() (sbws.lib.v3bwfile.V3BWHeader static method)

 	consensus_valid_after() (sbws.lib.relaylist.Relay property)

 	count() (sbws.util.state.State method)

 	create_parser() (in module sbws.util.parser)

 	create_path_relay() (in module sbws.core.scanner)

D

 	
 	desc_bw_avg_from_results() (sbws.lib.v3bwfile.V3BWLine static method)

 	desc_bw_bur_from_results() (sbws.lib.v3bwfile.V3BWLine static method)

 	desc_bw_obs_last_from_results() (sbws.lib.v3bwfile.V3BWLine static method)

 	desc_bw_obs_mean_from_results() (sbws.lib.v3bwfile.V3BWLine static method)

 	dest_url() (sbws.lib.resultdump.Result property)

 	
 	destination

 	directory authority

 	DirectoryLock (class in sbws.util.filelock)

 	dispatch_worker_thread() (in module sbws.core.scanner)

 	downloads() (sbws.lib.resultdump.ResultSuccess property)

 	dumpstacks() (in module sbws.core.scanner)

E

 	
 	earliest_bandwidth_from_results() (sbws.lib.v3bwfile.V3BWHeader static method)

 	enter() (sbws.lib.resultdump.ResultDump method)

 	error_no_circuit() (in module sbws.core.scanner)

 	error_no_helper() (in module sbws.core.scanner)

 	
 	exit_min_bw() (sbws.lib.relaylist.RelayList method)

 	exit_policy() (sbws.lib.relaylist.Relay property)

 	exits() (sbws.lib.relaylist.RelayList property)

 	exits_not_bad_allowing_port() (sbws.lib.relaylist.RelayList method)

F

 	
 	fail_hard() (in module sbws.globals)

 	fast() (sbws.lib.relaylist.RelayList property)

 	FileLock (class in sbws.util.filelock)

 	fingerprint() (sbws.lib.relaylist.Relay property)

 	(sbws.lib.resultdump.Result property)

 	flags() (sbws.lib.relaylist.Relay property)

 	force_get_results() (in module sbws.core.scanner)

 	freshness_reduction_factor() (sbws.lib.resultdump.ResultError property)

 	(sbws.lib.resultdump.ResultErrorAuth property)

 	(sbws.lib.resultdump.ResultErrorCircuit property)

 	from_bw_line_v1() (sbws.lib.v3bwfile.V3BWLine class method)

 	from_data() (sbws.lib.v3bwfile.V3BWLine class method)

 	from_dict() (sbws.lib.resultdump.Result static method)

 	(sbws.lib.resultdump.ResultError static method)

 	(sbws.lib.resultdump.ResultErrorAuth static method)

 	(sbws.lib.resultdump.ResultErrorCircuit static method)

 	(sbws.lib.resultdump.ResultErrorDestination static method)

 	(sbws.lib.resultdump.ResultErrorSecondRelay static method)

 	(sbws.lib.resultdump.ResultErrorStream static method)

 	(sbws.lib.resultdump.ResultSuccess static method)

 	
 	from_lines_v1() (sbws.lib.v3bwfile.V3BWHeader class method)

 	from_lines_v100() (sbws.lib.v3bwfile.V3BWHeader class method)

 	from_results() (sbws.lib.v3bwfile.V3BWFile class method)

 	(sbws.lib.v3bwfile.V3BWHeader class method)

 	(sbws.lib.v3bwfile.V3BWLine class method)

 	from_text_v1() (sbws.lib.v3bwfile.V3BWHeader class method)

 	from_v100_fpath() (sbws.lib.v3bwfile.V3BWFile class method)

 	from_v1_fpath() (sbws.lib.v3bwfile.V3BWFile class method)

G

 	
 	GapsCircuitBuilder (class in sbws.lib.circuitbuilder)

 	gen_parser() (in module sbws.core.cleanup)

 	(in module sbws.core.generate)

 	(in module sbws.core.scanner)

 	(in module sbws.core.stats)

 	generator

 	
 	generator_started_from_file() (sbws.lib.v3bwfile.V3BWHeader static method)

 	get() (sbws.util.state.State method)

 	get_config() (in module sbws.util.config)

 	get_random_range_string() (in module sbws.core.scanner)

 	get_socks_info() (in module sbws.util.stem)

 	guards() (sbws.lib.relaylist.RelayList property)

H

 	
 	handle_result() (sbws.lib.resultdump.ResultDump method)

I

 	
 	increment_recent_measurement_attempt() (sbws.lib.relaylist.RelayList method)

 	increment_recent_priority_list() (sbws.lib.relayprioritizer.RelayPrioritizer method)

 	increment_recent_priority_relay() (sbws.lib.relayprioritizer.RelayPrioritizer method)

 	increment_relay_recent_measurement_attempt() (sbws.lib.relaylist.Relay method)

 	increment_relay_recent_priority_list() (sbws.lib.relaylist.Relay method)

 	info_stats() (sbws.lib.v3bwfile.V3BWFile property)

 	
 	init_controller() (in module sbws.util.stem)

 	is_bootstrapped() (in module sbws.util.stem)

 	is_exit_not_bad_allowing_port() (sbws.lib.relaylist.Relay method)

 	is_max_bw_diff_perc_reached() (sbws.lib.v3bwfile.V3BWFile static method)

 	is_min_perc() (sbws.lib.v3bwfile.V3BWFile property)

 	is_torrc_starting_point_set() (in module sbws.util.stem)

K

 	
 	kb_round_x_sig_dig() (in module sbws.lib.v3bwfile)

 	keyvalue_tuple_ls() (sbws.lib.v3bwfile.V3BWHeader property)

 	
 	keyvalue_unordered_tuple_ls() (sbws.lib.v3bwfile.V3BWHeader property)

 	keyvalue_v1str_ls() (sbws.lib.v3bwfile.V3BWHeader property)

 	keyvalue_v2_ls() (sbws.lib.v3bwfile.V3BWHeader property)

L

 	
 	last_consensus_timestamp() (sbws.lib.relaylist.Relay property)

 	(sbws.lib.relaylist.RelayList property)

 	last_time_from_results() (sbws.lib.v3bwfile.V3BWLine static method)

 	latest_bandwidth_from_results() (sbws.lib.v3bwfile.V3BWHeader static method)

 	
 	launch_or_connect_to_tor() (in module sbws.util.stem)

 	launch_tor() (in module sbws.util.stem)

 	load_recent_results_in_datadir() (in module sbws.lib.resultdump)

 	load_result_file() (in module sbws.lib.resultdump)

M

 	
 	main() (in module sbws.core.cleanup)

 	(in module sbws.core.generate)

 	(in module sbws.core.scanner)

 	(in module sbws.core.stats)

 	main_loop() (in module sbws.core.scanner)

 	master_key_ed25519() (sbws.lib.relaylist.Relay property)

 	(sbws.lib.resultdump.Result property)

 	max_bw() (sbws.lib.v3bwfile.V3BWFile property)

 	mean_bw() (sbws.lib.v3bwfile.V3BWFile property)

 	measure_bandwidth_to_server() (in module sbws.core.scanner)

 	measure_relay() (in module sbws.core.scanner)

 	measure_rtt_to_server() (in module sbws.core.scanner)

 	measured_progress_stats() (sbws.lib.v3bwfile.V3BWFile static method)

 	median_bw() (sbws.lib.v3bwfile.V3BWFile property)

 	merge_result_dicts() (in module sbws.lib.resultdump)

 	min_bw() (sbws.lib.v3bwfile.V3BWFile property)

 	
 module

 	sbws.core

 	sbws.core.cleanup

 	sbws.core.generate

 	sbws.core.scanner

 	sbws.core.stats

 	sbws.globals

 	sbws.lib

 	sbws.lib.circuitbuilder

 	sbws.lib.relaylist

 	sbws.lib.relayprioritizer

 	sbws.lib.resultdump

 	sbws.lib.v3bwfile

 	sbws.util

 	sbws.util.config

 	sbws.util.filelock

 	sbws.util.parser

 	sbws.util.state

 	sbws.util.stem

 	sbws.util.userquery

 	
 	msg() (sbws.lib.resultdump.ResultError property)

N

 	
 	nickname() (sbws.lib.relaylist.Relay property)

 	(sbws.lib.resultdump.Result property)

 	non_exit_min_bw() (sbws.lib.relaylist.RelayList method)

 	
 	non_exits() (sbws.lib.relaylist.RelayList property)

 	num() (sbws.lib.v3bwfile.V3BWFile property)

 	num_lines() (sbws.lib.v3bwfile.V3BWHeader property)

 	num_results_of_type() (in module sbws.lib.v3bwfile)

O

 	
 	observed_bandwidth() (sbws.lib.relaylist.Relay property)

 	
 	only_relays_with_bandwidth() (in module sbws.util.stem)

P

 	
 	parse_user_torrc_config() (in module sbws.util.stem)

 	print_stats() (in module sbws.core.stats)

 	
 Python Enhancement Proposals

 	PEP 0257

 	PEP 0257#id15

 	PEP 20

 	PEP 8

 	PEP 8#imports

Q

 	
 	query_yes_no() (in module sbws.util.userquery)

R

 	
 	random_relay() (sbws.lib.relaylist.RelayList method)

 	read_number_consensus_relays() (sbws.lib.v3bwfile.V3BWFile static method)

 	read_router_statuses() (sbws.lib.v3bwfile.V3BWFile static method)

 	recent_consensus_count() (sbws.lib.relaylist.RelayList property)

 	recent_measurement_attempt_count() (sbws.lib.relaylist.RelayList property)

 	recent_measurement_attempt_count_from_file() (sbws.lib.v3bwfile.V3BWHeader static method)

 	recent_priority_list_count() (sbws.lib.relayprioritizer.RelayPrioritizer property)

 	recent_priority_list_count_from_file() (sbws.lib.v3bwfile.V3BWHeader static method)

 	recent_priority_relay_count() (sbws.lib.relayprioritizer.RelayPrioritizer property)

 	recent_priority_relay_count_from_file() (sbws.lib.v3bwfile.V3BWHeader static method)

 	Relay (class in sbws.lib.relaylist)

 	relay_average_bandwidth() (sbws.lib.resultdump.Result property)

 	relay_burst_bandwidth() (sbws.lib.resultdump.Result property)

 	relay_in_recent_consensus() (sbws.lib.resultdump.Result property)

 	relay_in_recent_consensus_count() (sbws.lib.relaylist.Relay property)

 	relay_observed_bandwidth() (sbws.lib.resultdump.Result property)

 	relay_recent_measurement_attempt() (sbws.lib.resultdump.Result property)

 	relay_recent_measurement_attempt_count() (sbws.lib.relaylist.Relay property)

 	relay_recent_priority_list() (sbws.lib.resultdump.Result property)

 	relay_recent_priority_list_count() (sbws.lib.relaylist.Relay property)

 	RelayList (class in sbws.lib.relaylist)

 	RelayPrioritizer (class in sbws.lib.relayprioritizer)

 	relays() (sbws.lib.relaylist.RelayList property)

 	relays_fingerprints() (sbws.lib.relaylist.RelayList property)

 	
 	remove_event_listener() (in module sbws.util.stem)

 	Result (class in sbws.lib.resultdump)

 	Result.Relay (class in sbws.lib.resultdump)

 	result_putter() (in module sbws.core.scanner)

 	result_putter_error() (in module sbws.core.scanner)

 	result_type_to_key() (in module sbws.lib.v3bwfile)

 	result_types_from_results() (sbws.lib.v3bwfile.V3BWLine static method)

 	ResultDump (class in sbws.lib.resultdump)

 	ResultError (class in sbws.lib.resultdump)

 	ResultErrorAuth (class in sbws.lib.resultdump)

 	ResultErrorCircuit (class in sbws.lib.resultdump)

 	ResultErrorDestination (class in sbws.lib.resultdump)

 	ResultErrorSecondRelay (class in sbws.lib.resultdump)

 	ResultErrorStream (class in sbws.lib.resultdump)

 	results_away_each_other() (sbws.lib.v3bwfile.V3BWLine static method)

 	results_for_relay() (sbws.lib.resultdump.ResultDump method)

 	results_recent_than() (sbws.lib.v3bwfile.V3BWLine static method)

 	ResultSuccess (class in sbws.lib.resultdump)

 	
 RFC

 	RFC 7233

 	round_sig_dig() (in module sbws.lib.v3bwfile)

 	rtt_from_results() (sbws.lib.v3bwfile.V3BWLine static method)

 	rtts() (sbws.lib.resultdump.ResultSuccess property)

 	run_speedtest() (in module sbws.core.scanner)

S

 	
 	sbws generate

 	sbws scanner

 	
 sbws.core

 	module

 	
 sbws.core.cleanup

 	module

 	
 sbws.core.generate

 	module

 	
 sbws.core.scanner

 	module

 	
 sbws.core.stats

 	module

 	
 sbws.globals

 	module

 	
 sbws.lib

 	module

 	
 sbws.lib.circuitbuilder

 	module

 	
 sbws.lib.relaylist

 	module

 	
 sbws.lib.relayprioritizer

 	module

 	
 sbws.lib.resultdump

 	module

 	
 sbws.lib.v3bwfile

 	module

 	
 	
 sbws.util

 	module

 	
 sbws.util.config

 	module

 	
 sbws.util.filelock

 	module

 	
 sbws.util.parser

 	module

 	
 sbws.util.state

 	module

 	
 sbws.util.stem

 	module

 	
 sbws.util.userquery

 	module

 	scanner

 	scanner() (sbws.lib.resultdump.Result property)

 	set_torrc_options_can_fail() (in module sbws.util.stem)

 	set_torrc_runtime_options() (in module sbws.util.stem)

 	set_torrc_starting_point() (in module sbws.util.stem)

 	set_under_min_report() (sbws.lib.v3bwfile.V3BWFile static method)

 	State (class in sbws.util.state)

 	stop_threads() (in module sbws.core.scanner)

 	store_result() (sbws.lib.resultdump.ResultDump method)

 	strv1() (sbws.lib.v3bwfile.V3BWHeader property)

 	strv2() (sbws.lib.v3bwfile.V3BWHeader property)

 	sum_bw() (sbws.lib.v3bwfile.V3BWFile property)

T

 	
 	time() (sbws.lib.resultdump.Result property)

 	timed_recv_from_server() (in module sbws.core.scanner)

 	to_dict() (sbws.lib.resultdump.Result method)

 	(sbws.lib.resultdump.ResultError method)

 	(sbws.lib.resultdump.ResultErrorAuth method)

 	(sbws.lib.resultdump.ResultErrorCircuit method)

 	(sbws.lib.resultdump.ResultErrorDestination method)

 	(sbws.lib.resultdump.ResultErrorSecondRelay method)

 	(sbws.lib.resultdump.ResultErrorStream method)

 	(sbws.lib.resultdump.ResultSuccess method)

 	to_plt() (sbws.lib.v3bwfile.V3BWFile method)

 	
 	touch_file() (in module sbws.globals)

 	trim_results() (in module sbws.lib.resultdump)

 	trim_results_ip_changed() (in module sbws.lib.resultdump)

 	type() (sbws.lib.resultdump.Result property)

 	(sbws.lib.resultdump.ResultError property)

 	(sbws.lib.resultdump.ResultErrorAuth property)

 	(sbws.lib.resultdump.ResultErrorCircuit property)

 	(sbws.lib.resultdump.ResultErrorDestination property)

 	(sbws.lib.resultdump.ResultErrorSecondRelay property)

 	(sbws.lib.resultdump.ResultErrorStream property)

 	(sbws.lib.resultdump.ResultSuccess property)

U

 	
 	update_progress() (sbws.lib.v3bwfile.V3BWFile method)

 	update_relay_in_recent_consensus() (sbws.lib.relaylist.Relay method)

 	
 	update_router_status() (sbws.lib.relaylist.Relay method)

 	update_server_descriptor() (sbws.lib.relaylist.Relay method)

V

 	
 	v3bw file

 	V3BWFile (class in sbws.lib.v3bwfile)

 	V3BWHeader (class in sbws.lib.v3bwfile)

 	V3BWLine (class in sbws.lib.v3bwfile)

 	
 	valid_after_from_network_statuses() (in module sbws.lib.relaylist)

 	valid_circuit_length() (in module sbws.lib.circuitbuilder)

 	validate_config() (in module sbws.util.config)

 	version() (sbws.lib.resultdump.Result property)

W

 	
 	wait_for_results() (in module sbws.core.scanner)

 	warn_if_not_accurate_enough() (sbws.lib.v3bwfile.V3BWFile static method)

 	
 	write() (sbws.lib.v3bwfile.V3BWFile method)

 	write_result_to_datadir() (in module sbws.lib.resultdump)

 _images/bwauth_measured_7days.png
BWAuth Measured Relays, Past 7 Days

20003

&0

8000

7500

7,000

6500

6000

5500

50004

1ZPM Fil8 12PM Sa1 12PM 20 12PM Mon2l 12PM Tue22 12PM Wea2s 12PM Thu2a 12PM

_images/bwauth_measured_90days.png
BWAuth Measured Relays, Past 90 Days

10000

000

8000

5000

- “fﬁr

Oaze Nevod Nevi Novzs, De(O

Dec 15 Jn0s iz Jmzo

_images/pycallgraph.png
main sbws
main sbws.core stats <module> shws b v3bufle <module> sbws.core cleanup <module> sbws.core scanner <module> sbws.util requeses <module> prr—— s il stace, <module> sbws.util flelock <module> sbws.util imestamp <module> shis <module> sbws.util parser <module> s, utiL s <module> s sbrs. <module> sl destination <madule> sbws.globals <module> shis.uti confia_expand_path s i resuledump. <module> S i relaylse <module> sbws.util stem <module> sbws.util config <module> S b circutbuilder <module> sbws i relayprioritizer <module> sbws.core generate. <module>.
Cails: T calls: 1 calls | cail: 1 calls 1 il 1 Galls: 1 Galls 1 call: 1 Galls: T Gl 1 ails 1 calls 1 il 1 cail: 1 calls 1 Gails 21 call: T call: 1 Gl 1 Galls T call: 1 eail: 1 Cails 1
time: 0.0000005 time: 0.0006275 time: 0.0738325 time: 00122175 time: 0.4519425 time: 0.0000585 time: 0.0000005 time: 00001675 time: 00016035 time: 0.0000525 time: 12073085 time: 0.0001025 time: 0.0003105 time:0.6284055 time: 02158735 time: 12023065 time: 0.0049315 time: 0.0422575 time:0.158756 time: 0.1375605 time: 0.0560835 time: 0.1630305 time: 0.0005735 time: 00781035
1 1 1 T T T T 1 1 1 1 1 1 T 1 1 ' 1 T 1 T T T T ' 1 1 1 1 ' 1 T 1 1 1
sl v3bnfle V3EWFle sl v3bufle V3EWHeader sbws b v3bnfle V3EWLine sbws.util config get_config sbws.util config validate_config sbws.sbus._ensure_dirs shis i f.sbrs_eaquired_disk_space sbws.util parser create_parser sbws.util config confgure_logaing sbws.sbus._adlust_log_level sbws.sbs_get_startup_line sbws.core scannermain s utlseate State sbws.util lelock FileLock sbws.util flelock_Flock sbws.util lelock DirectoryLock s, Sectings._inie_ sbws Sextings sbws b destination Destination sbws.ib destination Destinationtist shws b resuledump._Resuleype S, resuledump ResubError S i resuledump ResubErrorauth sbws b resuledump ResubErrorCircuic s i resuledump Resule s b resuledump._SerEnum sbws b resuledump ResuhErrorStream s i resultdump ResultDump sbws b resuledump ResuliSuccess S i relaylise Relay s i relaylist Relaylise s b circutbuilder PahLengthException s b cireuitbuilder CircultBulder sbws b circubuilder GapsCircultBulder S i relayprioritizerRelayPrioritizer
cails: 1 Cail: 1 cail: 1 Galls Calls 1 Gl 1 Gl 1 cail: il 1 il 1 il 1 Gall: 1 cail: 1 Gails: 1 call: 1 cail: 1 Call: 1 Gall: 1 cails 1 Gall: 1 call 1 calls T Cail: 1 calls: 1 Call: 1 call: 1 call: 1 calls 1 cails 1 call: 1 Calls T calls: 1 call: T call: 1 call: 1
time!0.0000705 time: 0.0000395 time!0.0000435 time: 0.0289785 time: 00331185 time! 00034745 time: 0.0031255 time 0.0558835 time: 0.0637845 ime 0.000008s time: 0.0001355 time: 0.0000005 time: 0.0000255 time: .0000105 time’0.0000115 time’0.0000105 time: 0.0002085 time: .0000105 time!0.0000265 time: .0000155 time: 0.0006315 time: 0.0000205 time!0.0000175 time: 0.0000285 time: 0.0001525 time: 00001745 time!0.000016 time: .0000155 time!0.0000245 time: 0.0000355 time: 0.0000335 time: .0000155 time: 0.0000285 time!0.0000265 time: 0.0000035
T T 1 1 f T T T T T T T T T T 1 1 '
sbws.util config._get defaule logaing_confiy shws.uil.confiy, get user_config sbws.util config_get defaule_confiy shwsuil config_validate_paths shis il confia_validate_tor sbws.util config_validate_destinations sbws.util confiy validate_cleanup sbws.util confiy. validate_scanner sbws.util config_validate_relayprioriizer sbws.util config, validate_general sbws.util config validate_logaing sbws.core scanner gen_parser sbws.core stats gen_parser sbws.core cleanup gen_parser sbws.core genarata gen_parser sbws.util config_can_log_to_fle sbws.core scanner run_speedtest sbws.util imestamp non_isode_str S, i resledump Relay
Gl 1 ST st it iy il ST ST Gl 1 ST i GallaT il il SilsT it 1 il 1 il il Y
time: 0.0080205 time: 0.0052735 time: 00164715 time: 0.0014585 time: 00013125 time: 0.0085475 time: 0.0027855 time: 0.0068635 time: 0.002206 time: 0.0045315 time: 0.0046255 time: 0.0079285 time: 00030165 time: 00103365 time: 00153035 time: 0.0008355 time: 0.0000005 time: 0.0001045 time: 00000115
s il state Seate._coneains_
1 1o 1 1 1 1 1 1 1 1 1 o S S 1 1 1o 1 1 1 1 il 1 1o 1 [R 1
time: 0.0063865
sbws.util canfig. obtain_run_dpath sbws.util config_validate._section_urls sbws.util config._validate._section_keys sbws.util config_validate_nickname sbws.util config_validate._section_ints sbws.util config_validate_section floats sbws.util config_validate_section_bools sbws.util canfig_validate_section_enums shws il state Seate_inie_ sbws.Sexcings nic_heep_headers S i resuledump ResuleDump._inic_ sbws.util seate Seate._getitem_ sbws.ib.relayprioritzer RelayPrioritizer._init_ sbws b destination from_config Sbws b circutbuilder GapsCircultBuilder_inie_ sbws.utilstam launch_tor sbws.utilsceminie_controller Sbws i relayprioritizerRelayPrioritizerbest_pririty shws.util state Seate._setitem_ sbws.util imestamp d obj_to_isode_str
1 1 e il ¢ ailsd <l 3 <allss Gl 1 ils Galls T il T il Gils's calls 2 1 il 1 i T il T il T o't
time: 0.0070585 time: 00035475 time: 0.0034425 time: 0001876 time: 00187085 time: 0.0000205 time: 0.0034035 time: 0.0081845 time: 00017635 time: 00062775 time: 00011185 time: 5.8083565 time: 0.0028505 time: 0.0000005 time: 0.0142395 time: 0.0000265
T ' 1 i 1 1 T [

sbws.util canfiy_extend_config
iz
ime: 0.0271645

sbws.util config_obtain_user_conf_path
Tl 1
ime: 0.0000345

sbws.util config_obtain_sbws_home
i
time: 0.0007245

ERE
time: 0.000649

s 1

time: 0.0042545 ime: 0.0048515

sbws.util config_validate_int
calls 14
tima: 0.007020¢

sbws.util confie_validate_url
il
ime: 0.00400

ime: 0.000645

sbiws.util confiy validate_string
iz 1
ime: 0.0005545

sbws.util config_validate_boolean
s 7
ime: 0.003471¢

sbi.util canfiy validate_flost
calli §
time: 0.003126¢

sbis.util confiy validate_enum
aliz 4
time: 0.001647¢

Generated by Pychon Call Graph v1.0.1

pycallgraph sionchop

sbws.libdestination. DestinstianList_int_
calls 1
time: 0.000952¢

sbws b destination._parse_verif_option
iz 1
ime: 0.000072¢

sbiws.utilstate. State._read
alls 5
ime: 0.039731¢

sbw.util flelock ilsLack,_exit_
Galis: §
ima; 0.012838¢

shws.util stem parse_user_torre_config
il 1
time: 0.000025¢

sbws.ibdestination. Dastination. _init_
allz 1
ime: 0.000243¢

sbw.util flelock FlaLack_init_
cills 12 6
tima: 0.000329¢

sbws.utilstem_init_contraller_socket
<allz 2
time: 0.102457¢

sbw.util flelack FilaLack,_enter_

sbws.utilstate. State._write

ime: 0.008055%

calls 5
imaf 00301245

S i relaylise Relayliserelays
Callz: 1

il 1
ime: 0.000160¢

S, relaylise Relaylise_needlrefresh
eallz 1
ima; 0.000021¢

_images/dirauths_bwauths.png
Current bandwidth authorities

Advertsed
Nidkname! Bandwkdth Uptime Country 1Pus e Flogs Add.Flags ORPort Dirpert Type
edmn() 3MBs NlSh T 196108206212 - e5=0 ®
eserpe() | ssobKEs Saln = Gea2in erE=0u0 s
eI soKes S B 1ms30u era=00e ou1

P TSI s dOsszzene0sIln #=OBE)
SO sokes g BN 2WIAWENA0LS #=ORO w
a0 S0 i T p—— e=o0z0

o cnneber KB loamn m 232420 HOLSTESSING2M e=0z0)

)
e () 40KBYs 2408 &
 wbcinoo(l) 40KB/s 20a13n

() s 2ham

15431525 260TASO0154:3 e=080 o w
BLISBALIE 000NN @=0BO oz w
1995881140 =080 ° “oow

HEHE S HHHH

https://metrics.torproject.org/rs.html#search/flag:Authority

_images/torperf.png
Time to complete 50 KiB request to public server

Source [op b B o B o 5 s

ok "

05
201811 201812 201901

nav.xhtml

 Table of Contents

 		
 Welcome to Simple Bandwidth Scanner’s documentation!

 		
 Readme

 		
 Installing

 		
 Deploying and running

 		
 Changelog

 		
 Documentation

 		
 License

 		
 Authors

 		
 Installing Simple Bandwidth Scanner

 		
 System requirements

 		
 Python dependencies

 		
 Installing sbws from source

 		
 Installing sbws for development or testing

 		
 Configuration and deployment

 		
 System physical requirements

 		
 Deploying Simple Bandwidth Scanner

 		
 destination requirements

 		
 scanner setup

 		
 Changelog

 		
 1.2.0

 		
 New

 		
 Changes

 		
 Fix

 		
 Other

 		
 v1.1.0 (2019-03-27)

 		
 New

 		
 Fix

 		
 v1.0.5 (2019-03-06)

 		
 v1.0.4 (2019-03-06)

 		
 v1.0.3 (2019-02-28)

 		
 Fixed

 		
 Changed

 		
 Added

 		
 v1.0.2 (2018-11-10)

 		
 Fixed

 		
 Changed

 		
 v1.0.1 (2018-11-01)

 		
 Changed

 		
 v1.0.0 (2018-10-29)

 		
 Fixed

 		
 Changed

 		
 Added

 		
 v0.8.0 (2018-10-08)

 		
 Added

 		
 Fixed

 		
 Changed

 		
 v0.7.0 (2018-08-09)

 		
 Added

 		
 Fixed

 		
 Changed

 		
 v0.6.0 (2018-07-11)

 		
 Added

 		
 Fixed

 		
 Changed

 		
 Removed

 		
 v0.5.0 (2018-06-26)

 		
 Added

 		
 Fixed

 		
 Changed

 		
 v0.4.1 (2018-06-14)

 		
 Changed

 		
 Fixed

 		
 Authors

 		
 Simple Bandwidth Scanner - SBWS(1)

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 Positional arguments

 		
 Optional arguments

 		
 EXAMPLES

 		
 FILES

 		
 SEE ALSO

 		
 BUGS

 		
 Simple Bandwidth Scanner - SBWS.INI(5)

 		
 DESCRIPTION

 		
 SECTIONS

 		
 EXAMPLES

 		
 FILES

 		
 SEE ALSO

 		
 BUGS

 		
 Contributing to Simple Bandwidth Scanner

 		
 Bug reports or feature requests

 		
 Code/documentation patches

 		
 Steps to create a MR

 		
 Code style

 		
 Extra required files

 		
 Commits

 		
 Code being reviewed workflow

 		
 Reviewing code

 		
 Releases

 		
 Example commit message

 		
 Installing tests dependencies and running tests

 		
 Installing and building the documentation

 		
 How sbws works

 		
 Overview

 		
 Initialization

 		
 Measuring relays

 		
 Measuring a relay

 		
 Selecting a second relay

 		
 Selecting the data to download

 		
 Writing the measurements to the filesystem

 		
 How aggregation and scaling works

 		
 Filtering the bandwidth measurements

 		
 Scaling the bandwidth measurements

 		
 Writing the bandwidth file

 		
 Torflow aggregation and scaling

 		
 Initialization

 		
 Descriptor values for each relay

 		
 Descriptor bandwidth with PID control

 		
 Scaling the raw measurements

 		
 Overview

 		
 Stream and filtered bandwidth for each relay

 		
 Stream and filtered bandwidth for all relays

 		
 Ratio for each relay

 		
 Scaled bandwidth for each relay without PID control

 		
 Scaled bandwidth for each relay with PID control

 		
 Other pid KeyValues in the Bandwidth File

 		
 Limit scaled bandwidth for each relay

 		
 Round the scaled bandwidth for each relay

 		
 Differences between Torflow and sbws

 		
 Aggregating measurements and scaling

 		
 Filtering

 		
 Values from the previous Bandwidth File

 		
 Bandwidth File KeyValues

 		
 Code design

 		
 UML classes diagram

 		
 Packages diagram

 		
 scanner threads

 		
 Critical sections

 		
 Call graph

 		
 The state.dat file

 		
 scanner_started

 		
 Internal code configuration files

 		
 Default Configuration

 		
 Internal Tor configuration for the scanner

 		
 Package API

 		
 Subpackages

 		
 sbws.core package

 		
 sbws.lib package

 		
 sbws.util package

 		
 Submodules

 		
 sbws.globals module

 		
 Implementation decissions

 		
 Dependencies

 		
 sbws version

 		
 Changing Bandwidth file monitoring KeyValues

 		
 Where the values of the keys come from?

 		
 Transition from numbers to datetimes

 		
 Disadvantages

 		
 Conclussion

 		
 Relays’ bandwidth distribution

 		
 sbws raw measurements compared to Torflow measurements

 		
 sbws linear scaling

 		
 sbws Torflow scaling

 		
 How bandwidth files are shown in the Tor network

 		
 Directory authorities’ votes

 		
 Directory authorities’ bandwidth file URL

 		
 Bandwidth authorities in metrics

 		
 Current bandwidth authorities

 		
 Bandwidth Authorities - Measured Relays past 7 days

 		
 Bandwidth Authorities - Measured Relays past 90 days

 		
 Monitoring bandwidth changes in the Tor Network

 		
 Bandwidth authorities timeline

 		
 Bwauths number of measured relays

 		
 Total consensus weights across bandwidth authorities

 		
 Not measured relays and descriptors and consensus updates

 		
 Total bandwidth

 		
 Time to download a file

 		
 Roadmap

 		
 Release 1.0.0

 		
 Release 1.1.0

 		
 Glossary

 		
 Frequently Asked Questions (FAQ)

 		
 How many hops are the circuits used to perform the measurements?

 		
 How are relays selected to be measured?

 		
 How do sbws scanner results end up in the consensus?

 		
 Does sbws need any open ports?

 		
 How much bandwidth will the sbws scanner use?

 		
 How much bandwidth will the webserver use?

 		
 Should I run my own webserver? Use a CDN? Something else?

 		
 Switching from helpers to HTTP(S)

 		
 Some Problems with the sbws helper concept

 		
 Ways HTTP(S) is less terrible

 		
 Challenges

 		
 Measuring 2 relays at a time

 		
 Supporting many variations on HTTP(S)

 		
 Proposals

 		
 Configuration

_static/plus.png

_static/file.png

_static/minus.png

_images/totalcw.png
Total consensus weights across bandwidth authorities

0000 000-
==
50000 000- ==
=
— Faravaar
— bastat
40000 000-
— gabeimoo
— mastuska
— meris1
20080000] — longelaw

201811 201812 201901

_images/20180901_164014.png
BWARBE/SH

g
H

200000

- torflow
175000

150000

125000

100000

75000 -

50000 SR

. it

25000 -

0 i

0 1000 2000 3000 4000 5000 6000

_images/20210111_consensushealth_bwauths.png
7800

7600

6200

[l morial [l gabeimoo [l maatuska [l faravahar [l longclaw | bastet
BWAuth Measured Relays, Past 90 Days

oa1s

oazs

Novermber

[

Nov 15

Nov 22

[

et 0

e 13

et 20

et 27

Janos

Jan 10

_images/20180901_163442.png
Bw (KB/s)

1000

800

600

400

200

2nd sbws.

0

1000

2000

3000
Relays

4000

5000

6000

_images/43710932-ac1eeea8-9960-11e8-9e7e-21fddff2f7a3.png
3000000

. o sbws

« torflow
2500000
2000000
1500000
1000000

4 1000 2000 3000 4000 5000 6000
Relays

_images/43710933-ac95e0bc-9960-11e8-9aaf-0bb1f83b65e2.png
3000000

2500000

2000000

1500000

1000000

500000

o torflow .
- sbws
0 1000 2000 3000 4000 5000 6000

Relays

_images/advertised_bandwidth.png
300 Gbits -

200 G-

100 Gbis-

oGbis-

300 Gbits-

200 Gits-

100 Gbis-

oG-

Advertised and consumed bandwidth by relay flags

0 it onty [Guar an it uarany [woithr G o xi

R
S

200811 201812 201501

PMpusq posBioRY.

pinpusq pounsios

